13 research outputs found

    Spatial Performance Analysis and Design Principles for Wireless Peer Discovery

    Full text link
    In wireless peer-to-peer networks that serve various proximity-based applications, peer discovery is the key to identifying other peers with which a peer can communicate and an understanding of its performance is fundamental to the design of an efficient discovery operation. This paper analyzes the performance of wireless peer discovery through comprehensively considering the wireless channel, spatial distribution of peers, and discovery operation parameters. The average numbers of successfully discovered peers are expressed in closed forms for two widely used channel models, i.e., the interference limited Nakagami-m fading model and the Rayleigh fading model with nonzero noise, when peers are spatially distributed according to a homogeneous Poisson point process. These insightful expressions lead to the design principles for the key operation parameters including the transmission probability, required amount of wireless resources, level of modulation and coding scheme (MCS), and transmit power. Furthermore, the impact of shadowing on the spatial performance and suggested design principles is evaluated using mathematical analysis and simulations.Comment: 12 pages (double columns), 10 figures, 1 table, to appear in the IEEE Transactions on Wireless Communication

    A Stochastic Geometric Analysis of Device-to-Device Communications Operating over Generalized Fading Channels

    Get PDF
    Device-to-device (D2D) communications are now considered as an integral part of future 5G networks which will enable direct communication between user equipment (UE) without unnecessary routing via the network infrastructure. This architecture will result in higher throughputs than conventional cellular networks, but with the increased potential for co-channel interference induced by randomly located cellular and D2D UEs. The physical channels which constitute D2D communications can be expected to be complex in nature, experiencing both line-of-sight (LOS) and non-LOS (NLOS) conditions across closely located D2D pairs. As well as this, given the diverse range of operating environments, they may also be subject to clustering of the scattered multipath contribution, i.e., propagation characteristics which are quite dissimilar to conventional Rayeligh fading environments. To address these challenges, we consider two recently proposed generalized fading models, namely κμ\kappa-\mu and ημ\eta-\mu, to characterize the fading behavior in D2D communications. Together, these models encompass many of the most widely encountered and utilized fading models in the literature such as Rayleigh, Rice (Nakagami-nn), Nakagami-mm, Hoyt (Nakagami-qq) and One-Sided Gaussian. Using stochastic geometry we evaluate the rate and bit error probability of D2D networks under generalized fading conditions. Based on the analytical results, we present new insights into the trade-offs between the reliability, rate, and mode selection under realistic operating conditions. Our results suggest that D2D mode achieves higher rates over cellular link at the expense of a higher bit error probability. Through numerical evaluations, we also investigate the performance gains of D2D networks and demonstrate their superiority over traditional cellular networks.Comment: Submitted to IEEE Transactions on Wireless Communication

    A Comprehensive Analysis of 5G Heterogeneous Cellular Systems operating over κ\kappa-μ\mu Shadowed Fading Channels

    Get PDF
    Emerging cellular technologies such as those proposed for use in 5G communications will accommodate a wide range of usage scenarios with diverse link requirements. This will include the necessity to operate over a versatile set of wireless channels ranging from indoor to outdoor, from line-of-sight (LOS) to non-LOS, and from circularly symmetric scattering to environments which promote the clustering of scattered multipath waves. Unfortunately, many of the conventional fading models adopted in the literature to develop network models lack the flexibility to account for such disparate signal propagation mechanisms. To bridge the gap between theory and practical channels, we consider κ\kappa-μ\mu shadowed fading, which contains as special cases, the majority of the linear fading models proposed in the open literature, including Rayleigh, Rician, Nakagami-m, Nakagami-q, One-sided Gaussian, κ\kappa-μ\mu, η\eta-μ\mu, and Rician shadowed to name but a few. In particular, we apply an orthogonal expansion to represent the κ\kappa-μ\mu shadowed fading distribution as a simplified series expression. Then using the series expressions with stochastic geometry, we propose an analytic framework to evaluate the average of an arbitrary function of the SINR over κ\kappa-μ\mu shadowed fading channels. Using the proposed method, we evaluate the spectral efficiency, moments of the SINR, bit error probability and outage probability of a KK-tier HetNet with KK classes of BSs, differing in terms of the transmit power, BS density, shadowing characteristics and small-scale fading. Building upon these results, we provide important new insights into the network performance of these emerging wireless applications while considering a diverse range of fading conditions and link qualities

    Joint Uplink and Downlink Coverage Analysis of Cellular-based RF-powered IoT Network

    Get PDF
    Ambient radio frequency (RF) energy harvesting has emerged as a promising solution for powering small devices and sensors in massive Internet of Things (IoT) ecosystem due to its ubiquity and cost efficiency. In this paper, we study joint uplink and downlink coverage of cellular-based ambient RF energy harvesting IoT where the cellular network is assumed to be the only source of RF energy. We consider a time division-based approach for power and information transmission where each time-slot is partitioned into three sub-slots: (i) charging sub-slot during which the cellular base stations (BSs) act as RF chargers for the IoT devices, which then use the energy harvested in this sub-slot for information transmission and/or reception during the remaining two sub-slots, (ii) downlink sub-slot during which the IoT device receives information from the associated BS, and (iii) uplink sub-slot during which the IoT device transmits information to the associated BS. For this setup, we characterize the joint coverage probability, which is the joint probability of the events that the typical device harvests sufficient energy in the given time slot and is under both uplink and downlink signal-to-interference-plus-noise ratio (SINR) coverage with respect to its associated BS. This metric significantly generalizes the prior art on energy harvesting communications, which usually focused on downlink or uplink coverage separately. The key technical challenge is in handling the correlation between the amount of energy harvested in the charging sub-slot and the information signal quality (SINR) in the downlink and uplink sub-slots. Dominant BS-based approach is developed to derive tight approximation for this joint coverage probability. Several system design insights including comparison with regularly powered IoT network and throughput-optimal slot partitioning are also provided
    corecore