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Abstract— Device-to-device (D2D) communications are now
considered an integral part of future 5G networks, which will
enable direct communication between user equipments and
achieve higher throughputs than conventional cellular networks,
but with the increased potential for co-channel interference. The
physical channels, which constitute D2D communications, can
be expected to be complex in nature, experiencing both line-of-
sight (LOS) and non-LOS conditions across closely located D2D
pairs. In addition to this, given the diverse range of operating
environments, they may also be subject to clustering of the
scattered multipath contribution, i.e., propagation characteristics
which are quite dissimilar to conventional Rayleigh fading envi-
ronments. To address these challenges, we consider two recently
proposed generalized fading models, namely κ-μ and η-μ,
to characterize the fading behavior in D2D communications.
Together, these models encompass many of the most widely
utilized fading models in the literature such as Rayleigh,
Rice (Nakagami-n), Nakagami-m, Hoyt (Nakagami-q), and
One-sided Gaussian. Using stochastic geometry, we evaluate
the spectral efficiency and outage probability of D2D networks
under generalized fading conditions and present new insights
into the tradeoffs between the reliability, rate, and mode
selection. Through numerical evaluations, we also investigate
the performance gains of D2D networks and demonstrate their
superiority over traditional cellular networks.

Index Terms— 5G, device-to-device network, η-μ fading,
κ-μ fading, rate-reliability trade-off, stochastic geometry.
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I. INTRODUCTION

A. Related Works

THE recent unprecedented growth in mobile traffic has
compelled the telecommunications industry to come

up with new and innovative ways to improve cellular
network performance to meet the ever increasing data
demands. This has led to the introduction of fifth gener-
ation (5G) networks which are expected to provide 1000
fold gains in capacity while achieving latencies of less than
1 millisecond [1]. Device-to-device communications are a
strong contender for 5G networks [2] that allow direct commu-
nication between user equipments (UEs) without unnecessary
routing of traffic through the network infrastructure, resulting
in shorter transmission distances and improved data rates than
traditional cellular networks [3].

Currently, D2D communication is standardized by the
3rd Generation Partnership Project (3GPP) in LTE Release 12
to provide proximity based services and public safety
applications [4]. In parallel to the standardization efforts, D2D
communications have been actively studied by the research
community. For example, in [5], the authors have proposed
D2D as a multi-hop scheme, while in [6] and [7], the work
conducted in [5] has been extended to demonstrate that
D2D communications can improve spectral efficiency and
the coverage of conventional cellular networks. Additionally,
D2D has also been applied to multi-cast scenarios [8],
machine-to-machine (M2M) communications [9], and cellular
off-loading [10].

While D2D communications offer many advantages, they
also come with numerous challenges. These include the
difficulties in accurately modeling the interference induced
by cellular and D2D UEs, and consequently optimizing
the resource allocation based on the interference model.
Most of the previous works published in this area have
relied on system-level simulations with a large parameter
set [11], meaning that it is difficult to draw general con-
clusions. Recently, stochastic geometry has received consid-
erable attention as a useful mathematical tool for interfer-
ence modeling. Specifically, stochastic geometry treats the
locations of the interferers as points distributed according
to a spatial point process [12]. Such an approach captures
the topological randomness in the network geometry, offers
high analytical flexibility and achieves accurate performance
evaluation [13]–[17].

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/



4152 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 16, NO. 7, JULY 2017

Much work has also been done on evaluating the
performance of D2D networks over Rayleigh fading channels.
In [18], the authors have compared two D2D spectrum sharing
schemes (overlay and underlay) and evaluated the average
achievable rate for each scheme based on the stochastic
geometric framework. In [19], the authors extended the work
conducted in [18] by considering a D2D link whose length
depends on the user density. In [20], the authors proposed a
flexible mode selection scheme which makes use of truncated
channel inversion based power control for underlaid D2D
networks. Notwithstanding these advances, limited work has
been conducted to consider D2D networks with general fading
channels, for example in [21], the authors have considered
underlaid D2D networks over Rician fading channels and
evaluated the success probability and average achievable rate.

B. Motivation and Contributions

In 5G networks and especially for D2D communications,
fading environments will range from homogeneous and cir-
cularly symmetric through to non-homogeneous and non-
circularly symmetric. For example, the METIS project has
already demonstrated that the physical channels of 5G net-
works can be inhomogeneous with clusters of non-circularly
symmetric scattered waves [22]. Clearly in this case, the
assumption of traditional, homogeneous, linear and single
cluster fading models such as Rayleigh will no longer be
sufficient and we must look towards other more general and
realistic models such as κ-μ [23]–[25] and η-μ [23], [26].
Influenced by this, we consider the κ-μ fading model which
accounts for homogeneous, linear environments with line-
of-sight (LOS) components and multiple clusters of scat-
tered signal contributions, while the η-μ fading model rep-
resents inhomogeneous, linear environments with non-line-of-
sight (NLOS) conditions and multiple clusters of scattered
signal contributions.

As discussed earlier, most of the existing work in stochastic
geometry for wireless networks has been focused on Rayleigh
fading environments, owing to its tractability and favorable
analytical characteristics. The signal-to-noise-plus-interference
ratio (SINR) distributions for general fading environments
require evaluating the sum-products of aggregate interference
where several approaches have been proposed to facilitate the
derivation, most notably:

1) The conversion method based on displacement theorem
was used in [27]–[30]. This method treats the channel
randomness as a perturbation in the location of the
transmitter and transforms the original network with
arbitrary fading into an equivalent network without fad-
ing. Although the conversion method can be applied to
any fading distribution, it is more tractable for handling
large-scale shadowing effects. Specifically, if one applies
the conversion method to small-scale fading, the result-
ing equivalent model will have no fading, thereby the
Laplace transform-based approach can not be utilized.

2) The series representation method was used in
[21] and [31]. This approach expresses the interference
functionals as an infinite series of higher order

derivative terms [32] given by the Laplace transform of
the interference power. While the series representation
method provides a tractable alternative for handling
general fading, it often leads to situations where it is
difficult to derive closed form expressions.

3) The integral transform based approach was used
in [33]–[35], where either the Fourier transform (FT),
Laplace transform (LT), characteristic function (CF)
or moment generating function (MGF) is utilized.
For instance, Gil-Pelaez’s inversion formula was used
in [33] to find the distribution of the SINR using
the MGF. However, Gil-Pelaez’s inversion formula
involves an integral over the complex plane and the
MGFs of the related random variables may not always
exist. The Plancherel-Parseval theorem was used in
[34] and [35] to calculate the expectation of an arbitrary
function of the interference using the FT (or LT).
Although the Plancherel-Parseval theorem provides a
general framework, it often involves complex multi-fold
integration and results in intractable expressions.

Motivated by these approaches and their limitations, we
adopt a stochastic geometric framework to facilitate the per-
formance evaluation of D2D networks over generalized fading
channels; namely, κ-μ and η-μ. We consider a D2D network
overlaid upon a cellular network where the spatial locations of
the mobile UEs as well as the base stations (BSs) are modeled
as Poisson point processes (PPPs). The adopted framework
can evaluate the average of an arbitrary function of the SINR,
thereby enabling the estimation of the average rate and outage
probability.

The main contributions of this paper may be summarized
as follows.

1) We consider generalized fading conditions, namely,
(i) κ-μ and (ii) η-μ fading, to account for various small-
scale fading effects, such as LOS/NLOS conditions,
multipath clustering, and power imbalance between
the in-phase and quadrature signal components. These
two models together encompass most of the popular
fading models proposed in the literature. We utilize the
series representation of the κ-μ and η-μ distributions
to improve tractability and achieve closed form
expressions.

2) We analyze the Laplace transform of the interference
over κ-μ and η-μ fading channels and derive a closed
form expression for the D2D and cellular links. By
using a channel inversion based power control, we
derive the Laplace transform of the interference in a
closed form that does not involve an integral expression.

3) We exploit a novel stochastic geometric approach for
evaluating the performance of D2D networks over
generalized fading channels. This approach enables
us to evaluate the average of an arbitrary function of
the SINR as a closed form expression. We invoke the
proposed stochastic geometric approach to evaluate
the spectral efficiency and outage probability of D2D
networks and compare that to the performance of
conventional cellular networks. Furthermore, we study
the trade-off among a number of performance metrics,
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Fig. 1. System Model for Overlaid D2D Network.

which can provide invaluable insights that may be used
to optimize future network design.

The remainder of this paper is organized as follows. We
describe the system model in Section II and the generalized
fading models in Section III. We introduce the interference
of cellular and D2D networks in Section IV, then utilize
a stochastic geometric approach to evaluate the spectral
efficiency and the outage probability of D2D networks in
Section V. We present numerical results in Section VI and
conclude the paper in Section VII with some closing remarks.

II. SYSTEM MODEL

A. Network Model

We consider a D2D network overlaid upon an uplink cellular
network where a UE can directly communicate with other
UEs without relying on the cellular infrastructure if a certain
criterion is met. The overlaid spectrum access scheme allocates
orthogonal time/frequency resources to the cellular and D2D
transmitters by dividing the uplink spectrum into two non-
overlapping portions. The overlay D2D network excludes
cross-mode interference between cellular and D2D UEs and
achieves a reliable link quality at the cost of lower spec-
trum utilization. Specifically, a fraction β of the spectrum is
assigned for D2D communications and the remaining 1 −β is
allocated to cellular communications, where 0 ≤ β ≤ 1.

Fig. 1 depicts a high level overview of the system model
where the locations of the nodes are modeled as a spatial point
process in R

2. The UEs are assumed to form a homogeneous
PPP � ≡ {Xi }1 with intensity λ and each UE Xi has
associated parameters that collectively form a marked PPP �̃
as follows

�̃ = {(Xi , �i , Li , Pi )}, (1)

where Li is the distance between the i -th UE and its intended
receiver (referred to henceforth as the link distance), and
Pi is the transmit power of the i -th UE. The parameter �i

indicates the inherent type of the i -th transmit UE which may
be a potential D2D UE with probability q = P(�i = 1),
or a cellular UE with probability 1 − q , where q ∈ [0, 1].
For notational simplicity, we denote by Lc the link length
between a typical cellular UE and the associated BS. Similarly,

1 Xi will be used to denote both the i-th UE and the coordinate of its
position.

Ld represents the link length between a typical D2D UE and
the D2D receiver UE. The receiver can be either a cellular BS
or D2D receiver UE depending on the associated UE type.
The cellular BSs are assumed to be uniformly distributed as
PPP � with intensity λb. The D2D receiver UEs are randomly
distributed around their associated D2D UE according to the
distribution of the link length Ld , which is described later
in (6). The performance analysis is performed for the typical
receiver, which is assumed to be located at the origin due to
the stationarity of this setup. The notations used in this paper
are summarized in Table I.

B. Mode Selection and UE Classification

The operating mode of the UE Xi ∈ �̃ is determined by
two factors; 1) the inherent type (�i ) and 2) the mode selection
policy. If �i = 0, then the UE Xi is a cellular UE and always
connects to its closest BS (which is equivalent to the so-called
maximum average received power association). If �i = 1, then
Xi is a potential D2D UE which may use either cellular or
D2D mode based on the adopted mode selection policy.

We assume a distance-based mode selection scheme [18].
That is, a potential D2D UE chooses the D2D mode if the
D2D link length is smaller than or equal to a predefined mode
selection threshold θ , i.e., Ld ≤ θ . Otherwise, cellular mode
is selected. Therefore, the complete set of transmit UEs �̃ can
be divided into two spatial point processes as follows

• UEs operating in cellular mode:

�c with intensity λc = [(1 − q) + qP(Ld > θ)] λ, (2)

• UEs operating in D2D mode:

�d with intensity λd = qP(Ld ≤ θ)λ. (3)

1) Cellular Mode: We assume full-buffer transmission and
orthogonal multiple access in the cellular uplink implying
that at most one transmitter is active per cell over a given
resource block. The locations of the active UEs (in the cellular
mode) scheduled over the same resource block as the typical
receiver are assumed to follow the point process �e

c ⊂ �c.
Due to the restriction that at most one point of �e

c can
lie in each cell of the Poisson Voronoi tessellation formed
by � , it is not straightforward to characterize �e

c. This is
one of the key reasons why the exact uplink analysis for
this setup has not yet been performed. Interested readers are
advised to refer to [36] for more detailed discussion on user
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TABLE I

COMMON SYSTEM PARAMETERS

distributions in cellular networks. For high user densities, one
generative model that closely emulates this scenario while
also being quite realistic from the actual system perspective
is to assume that there is exactly one point of �e

c in each
cell of the Poisson Voronoi tessellation formed by � (also
assumed to be uniformly distributed in that cell). Viewed this
way, �e

c can be thought of as a Poisson-Voronoi perturbed
lattice [37]. However, due to the correlation between �e

c
and � (which correlates various link distances), the exact
analysis for even this setup is also not known. That being
said, it is possible to capture some of this correlation by
approximating �e

c with a non-homogeneous PPP �̂c with a
distance-dependent intensity function. This uplink model was
introduced and exploited in [13] and [38]–[40] and has been
shown to provide a reasonable approximation for the SINR
distribution of the cellular link. Please refer to [13] and [38] for
more details about the uplink problem and this approximation
approach.

Assumption 1: Given that the typical receiver is located at
the origin, the set of active interfering UEs �e

c in the cellular
mode that are scheduled within the same resource block is
approximated by a non-homogeneous PPP �̂c with intensity
λ̂c = λb

(
1 − exp

(−πλbd2
))

where ‖Xi‖ = d is the distance
between the interfering UE and the origin, as illustrated in
Fig. 1(c). The link distances Lc and Li can be approximately
modeled by the Rayleigh distribution [13] as follows

fLc (r) = 2πλbr exp
(
−λbπr2

)
,

P (Lc ≤ r) = 1 − exp
(
−λbπr2

)
,

(4)

fLi (r |d ) = 2πλbr exp
(−λbπr2

)

1 − exp
(−λbπd2

) , 0 ≤ r ≤ d, (5)

where Lc is the link distance between the typical cellular
UE and the connected BS at the origin, Li represents the
link distance between the interfering cellular UE Xi and
its associated BS, and ‖Xi‖ is the distance between the
interfering UE Xi and the BS located at the origin.2

2) D2D Mode: We model the D2D link length Ld using a
Rayleigh distribution [18]

fLd (r) = 2πλr

ξ
exp

(
−πλr2

ξ

)

= 2πλ′r exp
(
−λ′πr2

)
,

P (Ld ≤ r) = 1 − exp
(
−λ′πr2

)
, r ≥ 0,

(6)

where λ′ = λ
ξ and ξ is a fitting parameter that affects the

average D2D link distance. Specifically, the scale parameter

2Since each UE connects to the closest BS, the distance between an
interfering UE and the BS at the origin is larger than the interfering UE’s link
distance, i.e., Li ≤ ‖Xi ‖. The interested reader is referred to [13] and [38] for
a detailed description of (4) and (5). More discussions on the user distributions
appear in [36].
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of the Rayleigh distribution in (6) is σ =
√

ξ
2πλ and the

average D2D link distance is given by E [Ld ] = σ
√

π
2 =

√
ξ

4λ ,

i.e., ξ = 4λE [Ld ]2. D2D mode utilizes ALOHA with transmit
probability ε on each time slot, where 0 ≤ ε ≤ 1. Since the
potential D2D UEs in D2D mode follow a location indepen-
dent thinning process [18], the set of UEs operating in the
D2D mode is distributed according to a homogeneous PPP �d

with intensity λd = qP(Ld ≤ θ)λ, which is independent
to the set of UEs in the cellular mode. Similarly, due to
the location independent thinning induced by the ALOHA
scheme, the set of active interfering UEs that gain access to
the channel resource is distributed as a homogeneous PPP
ε�d with intensity ελd , where ε�d is a subset of �d , i.e.,
ε�d ⊂ �d .

Assumption 2: In order to maintain tractability, we assume
that ε�d and �̂c are independent.

C. Channel Inversion-Based Power Control

The received power at the origin from the UE Xi is
W = Pi τ‖Xi‖−α Gi , where Pi is the transmit power of the
UE Xi , ‖Xi‖ is the distance from Xi to the origin, α is the
path-loss exponent, τ is the path-loss intercept at unit distance
‖Xi‖ = 1, and Gi represents the small-scale fading.3 The
coefficients {Gi } of each link are assumed to be independent
of one another.

We assume channel inversion based power control, i.e.,
Pi = Li

α . Then, the received power is W = τGi (Li/‖Xi‖)α
for an interference link and W = τGi for the intended link.
The transmit power of the UEs operating in the cellular mode
Xi ∈ �̂c is Pc = Lα

c , whereas that of the potential D2D UEs in
the D2D mode Xi ∈ �d is Pd = Lα

d given that Ld ≤ θ . Since
a potential D2D UE may use either a D2D mode or a cellular
mode, for the purpose of our calculations, its transmit power
can be interpreted as the weighted average of the two operating
mode events, i.e., P̄d = P(Ld ≤ θ)Pd + P(Ld > θ)Pc.
Higher order moments of the transmit power for each mode
are evaluated in the following lemma.

Lemma 1: The l-th moments of the transmit power of a
cellular UE (Pc), a potential D2D UE in D2D mode (Pd ),
and a potential D2D UE (P̄d) are respectively given by

E

[
Pc

l
]

= �
( l

δ + 1
)

(λbπ)
l
δ

,

E

[
Pd

l
]

= 1

(λ′π)
l
δ

[
γ
( l

δ + 1, λ′πθ2
)

1 − exp
(−λ′πθ2

)

]

,

E

[
P̄l

d

]
= exp

(−λ′πθ2
)

(λbπ)
l
δ

�

(
l

δ
+ 1

)

+ 1

(λ′π)
l
δ

γ

(
l

δ
+ 1, λ′πθ2

)
,

(7)

where δ = 2
α , l > 0 is a positive real-valued constant, λ′ = λ

ξ ,
θ is the mode selection threshold, �(t) is the gamma function,

3We have isolated and focused on studying the impact of the small
scale fading upon the system model proposed here. Nonetheless, the
model can be readily adapted to include shadowing by using the approach
in [29, Lemma 1].

TABLE II

SPECIAL CASES OF THE κ -μ AND η-μ FADING MODELS

and γ (s, x) is the lower incomplete gamma function (See
Appendix I).

Proof: See Appendix II. �
Under this assumption, the received SINR for the two modes

at the origin are given by
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

D2D : SINRd = G0∑

X j ∈ε�d\{X0}
G j Lα

j ‖X j‖−α + N
,

Cellular : SINRc = G0∑

X j ∈�̂c\{X0}
G j Lα

j ‖X j ‖−α + N
,

(8)

where X0 represents the typical UE, G0 is the channel
coefficient between the typical UE and the origin and N = N0

τ
is determined by the noise power spectral density N0 and the
reference path-loss τ at a unit distance.

III. THE κ -μ AND η-μ FADING MODELS

The physical channels of D2D networks are often character-
ized as inhomogeneous environments with clusters of scattered
waves [22]. For example, strong line-of-sight (LOS) com-
ponents, correlated in-phase and quadrature scattered waves
with unequal-power, and non-circular symmetry are frequently
observed in the physical channel of wireless networks [25].
Therefore, to evaluate the transmission performance over real-
istic channels, we adopt two very general fading distributions
which together can model both homogeneous and inhomoge-
neous radio environments. These are:

1) The κ-μ Distribution: The κ-μ distribution represents
the small-scale variation of the fading signal under LOS con-
ditions, propagated through a homogeneous, linear, circularly
symmetric environment [23]–[25]. The κ-μ distribution is
a general fading distribution that includes Rayleigh, Rician,
Nakagami-m, and One-sided Gaussian distributions as special
cases (See Table II).

The received signal in a κ-μ fading channel consists of clus-
ters of multipath waves, where the signal within each cluster
has an elective dominant component and scattered waves with
identical powers. The parameters κ and μ are related to the
physical properties of the fading channel: κ represents the ratio
between the total power of the dominant components and the
total power of the scattered waves, whereas μ is the number
of multipath clusters.4

4Note that μ is initially assumed to be a natural number, however for the
κ-μ fading model, this restriction is relaxed to allow μ to assume any positive
real value.
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The PDF, l-th moment and Laplace transform of G are
respectively given by [23], [24], [41]

fG(x) = μ x
μ−1

2

κ
μ−1

2 eμκ �
μ+1

2
κμ

e
− x

�κμ Iμ−1

(
2
√

κμ

�κμ
x

)
,

E

[
Gl

]
= �l

κμ

eμκ

�(μ + l)

�(μ)
1 F1(μ + l; μ; μκ),

LG(s) = E
[
exp(−sG)

]

= (
1 + s�κμ

)−μ exp

(

− μκ

1 + 1
s�κμ

)

,

(9)

where w̄ = E[G], κ , μ and l are positive real values,
�κμ � w̄

μ(1+κ) , (x)n = �(x+n)
�(x) represents the Pochhammer

symbol, Iν(x) is the modified Bessel function of the first kind,
and 1 F1(a; b; x) is the confluent hypergeometric function.

2) The η-μ Distribution: The η-μ distribution is used to
represent small scale fading under non-line-of-sight (NLOS)
conditions in inhomogeneous, linear, non-circularly symmetric
environments [23], [26]. It is a general fading distribution that
includes Hoyt (Nakagami-q), One-sided Gaussian, Rayleigh,
and Nakagami-m as special cases (See Table II).

The received signal in an η-μ fading channel is composed of
clusters of multipath waves. The in-phase and quadrature com-
ponents of the fading signal within each cluster are assumed to
be either independent with unequal powers or correlated with
identical powers. The parameter η denotes the scattered-wave
power ratio between the in-phase and quadrature components
and 2μ represents the real valued extension of the number of
multipath clusters.

The PDF, l-th moment and Laplace transform of G are
respectively given by [23], [24], [41]

fG (x) = 2
√

πμμ+ 1
2 hμ

�(μ)H μ− 1
2 w̄μ+ 1

2

xμ− 1
2 e

− x
�ημ Iμ− 1

2

(
x

�ημ

)
,

E

[
Gl

]
= �l

ημ

hμ

�(2μ + l)

�(2μ)

× 2 F1

(

μ + l

2
+ 1

2
, μ + l

2
; μ + 1

2
;
(

H

h

)2
)

,

LG(s) = 1

hμ

[
(
1 + s�ημ

)2 −
(

H

h

)2
]−μ

,

(10)

where w̄ = E[G], η, μ and l are positive real values,5

h = 2+η−1+η
4 , H = η−1−η

4 , �ημ � w̄
2μh and 2 F1(a, b; c; x)

is the Gaussian hypergeometric function.

IV. INTERFERENCE MODEL OF THE

OVERLAY D2D NETWORK

In this section, we introduce the interference of cellular and
D2D links and derive the Laplace transform of the interference
for the generalized fading channels considered here.

5h and H have two formats: format 1 is h = 2+η−1+η
4 , H = η−1−η

4 for
0 < η < ∞, whereas format 2 is h = 1

1−η2 , H = η

1−η2 for −1 < η < 1. In
this paper, we will only consider format 1 for notational simplicity.

A. D2D Mode

Let us consider a D2D link, where co-channel interference
is generated by potential D2D UEs operating in D2D mode.
Based on (8), the effective interference at the intended D2D
receiver is

Id =
∑

X j ∈ε�d\{X0}
G j Lα

j ‖X j‖−α. (11)

The point process �d in (11) is similar to the D2D process
in [18] since both models assume distance-based mode
selection as well as Rayleigh distributed D2D link lengths.
Nonetheless, the fading model in (11) affects the distrib-
ution of the aggregate interference and the corresponding
distribution parameters, which is characterized by the Laplace
transform of Id as follows.

Lemma 2: For overlay D2D, the Laplace transform of the
interference at the D2D receiver is

LId (s) = exp
(−cd · sδ

)
, (12)

where the constant terms cd for the κ-μ and η-μ fading
distributions are respectively given by
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

κ − μ : c0�
δ
κμ

eμκ

(
μ + δ − 1

δ

)

1 F1(μ + δ; μ; μκ),

η − μ : c0�
δ
ημ

hμ

(
2μ + δ − 1

δ

)

×2 F1

(
μ + δ + 1

2
, μ + δ

2
; μ + 1

2
; H 2

h2

)
,

(13)

with c0 � qεξ
sinc(δ) · γ

(
2, λπθ2 · ξ−1

)
, δ = 2

α , w̄ = E[G], the
fitting parameter ξ and ALOHA transmit probability ε.

Proof: See Appendix III. �
B. Cellular Mode

Based on Assumption 1, we model the interference at
the cellular BS by a non-homogeneous PPP �̂c with inten-
sity λb

(
1 − exp

(−πλbd2
))

[13], [38], where the interference
in (8) is

Ic =
∑

X j ∈�̂c\{X0}
G j Lα

j ‖X j ‖−α, (14)

and the Laplace transform of Ic is evaluated as follows.
Lemma 3: For overlay D2D, the Laplace transform of the

interference at the cellular BS is

LIc (s) = exp (−W (s)) , (15)

where W (s) for each channel is respectively given by

W (s) = μ · s �κμ

(1 − δ)eμκ 2 F1(μ + 1, 1 − δ; 2 − δ; −s�κμ)

+ (
1 + s�κμ

)−μ exp

(
−μκ · s�κμ

s�κμ + 1

)
− 1,

(16)

for the κ-μ fading and

W (s) = 2s�ημhμ

(1 − δ)H 2μ

∞∑

n=μ

n

(
H

h

)2n (n − 1

μ − 1

)

× 2 F1(1, 1 − δ − 2n; 2 − δ; −s�ημ)

+ h−μ

( (
1 + s�ημ

)2 −
(

H

h

)2)−μ

− 1,

(17)
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for the η-μ fading, δ = 2
α , �κμ � w̄

μ(1+κ) and �ημ � w̄
2μh .

Proof: See Appendix IV. �
Remark 1: The Laplace transform of the interference in the

cellular uplink is invariant to the node density λb. A similar
behavior was observed in [38] for Rayleigh fading and Lemma
3 extends this invariance property to any fading model that can
be represented by the κ-μ and η-μ distributions.

Remark 2: The invariance property and analytical
tractability of Lemma 3 are special properties that only
hold for the full channel-inversion based power control, i.e.,
Pc = Lα

c . If we use fractional power control [13], [38], i.e.,
Pc = Lαε

c with 0 ≤ ε ≤ 1, then the Laplace transform of
the aggregate interference depends on the BS density and
the integral in (48) can not be easily partitioned into two
single integral expressions, which significantly complicates
the derivation.

V. STOCHASTIC GEOMETRIC FRAMEWORK FOR

SYSTEM PERFORMANCE EVALUATION

To evaluate the network performance, one normally needs
to calculate the average of some function of the SINR γ
for a given SINR distribution fγ (x). The average of an
arbitrary function of the SINR represents the most commonly
used characteristics, such as the spectral efficiency, error
probability, statistical moments, etc. Quite often this can be
a challenging task because, within the stochastic geometry
framework, a closed form expression for fγ (x) is known only
for some special cases, such as Rayleigh [16] or Nakagami-m
fading [31]. Instead, we can evaluate the Laplace transform
of the interference LI (s) using the PDF of the channel fG (x).

To this end, we exploit a novel method to evaluate the
average of an arbitrary function of the SINR by using
LI (s) and fG (x) only, without fγ (x). The original idea was
proposed by Hamdi [42] for Nakagami-m fading and was
utilized in [43] to evaluate the network performance over
composite Nakagami-m fading and Log-Normal shadowing
channels, composite Rice fading and Log-Normal shadowing
channels and correlated Log-Normal shadowing. In this paper,
we apply Hamdi’s approach to κ-μ and η-μ fading, thereby
extending the applicability to the majority of the fading models
known in the literature.

Theorem 1: The average E

[
g
(

G0
I+N

)]
of an analytic func-

tion g(x) can be evaluated as follows

E

[
g

(
G0

I + N

)]
= g(0) +

∞∑

n=0

(μκ)n

n! eμκ
ϕκμ(n), (18)

for the κ-μ distributed signal envelope, where κ , μ, η are non-
negative real valued constants, ϕκμ(n) and gi (z) represent the
following expressions

ϕκμ(n) �
∫ ∞

0
gμ+n (z) LI

(
z

�κμ

)
exp

(
− Nz

�κμ

)
dz,

gi (z) = 1

�(μ + n)

di

dzi

(
zμ+n−1g(z)

)
.

(19)

Similarly, for the η-μ faded signal envelope,

E

[
g

(
G0

I + N

)]
= g(0) +

∞∑

n=0

anϕημ(n),

an =
(

n + μ − 1

n

)
(H/h)2n

hμ
,

(20)

where ϕημ(n) and gi(z) denote the following expressions

ϕημ(n) �
∫ ∞

0
g2μ+2n (z) LI

(
z

�ημ

)
exp

(
− Nz

�ημ

)
dz,

gi (z) = 1

�(2μ + 2n)

di

dzi

(
z2μ+2n−1g(z)

)
.

(21)

Proof: See Appendix V. �
Theorem 1 provides a general framework to evaluate arbi-

trary system performance measures when the received signal
power G0 follows either a Gamma distribution or a mixture
of Gamma distributions, which includes κ-μ and η-μ and the
majority of the most popular linear fading models utilized in
the literature.6 We note that Theorem 1 makes no assumption
on the underlying distribution of the constituent interference
channels. Therefore it can be applied even when the intended
signal and interfering links are described by different fading
models.

In the following, we apply Theorem 1 and Lemmas 1-3
to evaluate various performance measures for overlaid D2D
networks.

A. Spectral Efficiency

The spectral efficiency R of an overlaid D2D network is
determined in part by the amount of accessible radio resources,
denoted by �, to each operating mode as follows

R = � · E

[
log

(
1 + G0

I + N

)]
. (22)

In D2D mode, due to the ALOHA medium access, ε percent
of the transmitting UEs will gain access to the spectrum
resource for the D2D transmission, which is β fraction of
the available spectrum. In cellular mode, 1 − β fraction of
the available spectrum is allocated to the cellular transmission
and only one uplink transmitter within each cell can stay
active at any given resource block due to the orthogonal
multiple access. Thereby, the amount of accessible spectrum
resource is �d = βε for the D2D transmission and �c =
(1 − β)E

[ 1
M

]
for the cellular transmission, where M is the

number of potential cellular UEs within a cell. The average

E
[ 1

M

]
is evaluated in [18] as E

[ 1
M

] = λb
λc

(
1 − e

− λc
λb

)
where

λc = [(1 − q) + qP(Ld > θ)] λ.
Since a potential D2D UE may choose either cellular or

D2D mode, the spectral efficiency of an arbitrary poten-
tial D2D UE is the average of the two operating modes.
By using Theorem 1 and Lemmas 2, 3, the average term
E

[
log

(
1 + G0

I+N

)]
in (22) can be calculated and the spectral

6The interested reader is referred to [44] for a detailed description of the
fading models that can be represented as a mixture of Gamma distributions.
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efficiency of the D2D and cellular modes can be evaluated as
follows.

Theorem 2: For an overlaid D2D network, the spectral
efficiency of a cellular UE (Rc), a potential D2D UE operating
in D2D modes (Rd), and a potential D2D UE (R̄d ) are given
by

Rc =
(1 − β)

(
1 − e

− λc
λb

)
λb

λc
E

[
log

(
1 + G0

Ic + N

)]
,

Rd = βεE

[
log

(
1 + G0

Id + N

)]
,

R̄d = P (Ld > θ) Rc + P (Ld ≤ θ) Rd ,

(23)

where β is the spectrum partition factor, ε is the ALOHA
transmit probability, ξ is a fitting parameter for the D2D link
length distribution and P (Ld ≤ θ) = 1 − exp

(−λπθ2 · ξ−1
)

from (6). The average term E

[
log

(
1 + G0

I+N

)]
can be evalu-

ated using Theorem 1 as follows

E
[
log (1 + γ )

] =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1

eμκ

∞∑

n=0

(μκ)n

n! ϕκμ(n) for κ − μ

∞∑

n=0

anϕημ(n) for η − μ

(24)

where an is defined in (21), ϕκμ(n) and ϕημ(n) are defined
in Theorem 1, LI (s) is given by (12) for the D2D mode
and (15) for the cellular mode. The derivative terms gi (x)
for the logarithm function g(x) = log(1 + SINR) is evaluated
in [42] as gi (x) = 1

x

(
1 − 1

(1+x)i

)
.

Remark 3: We observe that Rc in (23) is a decreasing
function of the spectrum partition factor β, whereas Rd and R̄d

are increasing functions of β. For a UE operating in cellular
mode, Rc is an increasing function of the mode selection
threshold θ : Given a large θ , more UEs will choose the D2D
mode and the average number of the cellular UEs in a cell
E [N] will decrease. On the other hand, Rd is a decreasing
function of θ due to the increased D2D interference. Since R̄d

is the average of Rc and Rd , R̄d is concave function of θ .
(See Section VI)

Remark 4: Theorem 2 can be applied to the general case
when different types of fading affect the intended and interfer-
ing links. For example, if the fading observed in the intended
link is κ-μ distributed and that of the interference link is η-μ
distributed, then the average of the logarithm function can
be evaluated using (24) where the Laplace transform of the
interference LI (s) is given by (12) and (13) for the D2D mode
(or (15) and (17) for the cellular mode).

Remark 5: Theorem 1 can be utilized to evaluate any
performance measures that are represented as a function
of SINR. The analytic function g(x) and the corresponding
gi (x) for several performance measures are summarized in
Table III,7 where one can substitute i = μ+n to gi (x) for the
κ-μ distribution and i = 2μ + 2n for the η-μ distribution.

7The detailed proof of Table III is given in [42].

TABLE III

DIFFERENT g(x) AND gi (x) FOR EVALUATING VARIOUS SYSTEM MEA-
SURES

B. Outage Probability

The outage probability is defined for the D2D and cellular
mode as follows

Po(To) =

⎧
⎪⎪⎨

⎪⎪⎩

P

(
G0

Id + N
< To

)
for D2D mode,

P

(
G0

Ic + N
< To

)
for Cellular mode,

(25)

with a predefined SINR threshold To. Although Theorem 1
presents a generalized framework to calculate any performance
measure that is represented as an analytic function of the
SINR, it can not be used for evaluating SINR distribution
based performance measures, such as the outage probabil-
ity or rate coverage probability. For the outage probability,
g(x) = I(x < T0) is a step function and its higher order
derivative is an unbounded impulse signal.

Instead of using Theorem 1, we use the series representation
of the κ-μ and η-μ fading distributions and employ
Campbell’s theorem [12], [14] to represent the SINR
distribution in terms of the Laplace transform of the
aggregate interference as follows. The SINR distributions
P (SINR < To) in (25) can be evaluated as

∞∑

n=0

∞∑

m=0

bκμ
n,mE

[(
To (I + N )

�

)n+μ+m

e− To(I+N )
�

]

=
∞∑

n=0

∞∑

m=0

bκμ
n,mEt

[
tn+μ+m e−t] ,

(26)

for κ-μ fading, where we applied (60) with To(I+N )
� = t ,

�κμ = w̄
μ(1+κ) and bκμ

n,m = (μκ)ne−μκ

n!·�(n+μ+m+1) . The term
Et

[
tne−t

]
in (26) can be evaluated as follows

Et
[
tne−t] = (−1)n ∂nLt (s)

∂sn

∣
∣
∣∣
s=1

,

Lt (s) = E

[
e−s To(I+N )

�

]
= e− sTo N

� LI

(
sTo

�

)
,

(27)

where LI (s) is derived in Lemma 2 for the D2D link
and Lemma 3 for the cellular link. Therefore, the outage
probability of an overlaid D2D network is derived as follows

P (SINR < To)

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∞∑

n=0

∞∑

m=0

bκμ
n,mK (n+m+μ) (To) for κ − μ,

∞∑

n=0

∞∑

m=0

bημ
n,mK (2n+2μ+m) (To) for η − μ,

(28)



CHUN et al.: STOCHASTIC GEOMETRIC ANALYSIS OF D2D COMMUNICATIONS OPERATING OVER GENERALIZED FADING CHANNELS 4159

Fig. 2. Spectral efficiency of an overlaid D2D network for various channel parameters (κ,μ, w̄); (a)-(h) assume λb = 1
π5002 , λ = 10λb , ε = 0.8, α = 4,

β = 0.2, θ = 100m, q = 0.2 and N = N0
τ = −60 (dBm/Hz).
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where (61) is used for the η-μ fading and K (l) (To) denotes
the higher order derivative terms as

K (l) (To) = (−1)l ∂ l

∂sl

[
e− sTo N

� LI

(
sTo

�

)]∣∣
∣
∣
s=1

. (29)

The outage probability of the D2D mode (or cellular mode)
can be evaluated by substituting LId (s) from Lemma 2
(or LIc (s) from Lemma 3) into (29). The higher order
derivative in (29) can be numerically evaluated by using
Faa di Bruno’s formula [45], as used in some related
studies [31], [46].

VI. NUMERICAL RESULTS

In the following, we compare numerical results for different
fading models. All of the simulations were carried out using
MATLAB with the following parameters: BS node intensity
λb = 1

π5002 , UE node intensity λ = 10
π5002 , ALOHA transmit

probability ε = 0.8, path-loss exponent α = 4, spectrum
partition factor β = 0.2, mode selection threshold θ = 100m,
probability of potential D2D UEs q = 0.2, and effective
noise N = N0

τ = −60 (dBm/Hz), where N0 is the noise
spectral density and τ is the reference path-loss at a unit
distance. Without loss of generality, we assume identical
fading parameters across the intended and interference links.

We have assumed ξ = λ in Figs 2(a)-(d) and respectively
used w̄ = 1 for Fig. 2(a), μ = 1.2 for Fig. 2(b), μ = 1
for Fig. 2(c) and κ = 1 for Fig. 2(d). We observe that
a dominant LOS component (large κ), a large number of
scattering clusters (large μ) and higher average of the channel
coefficients (large w̄) collectively achieve a higher spectral
efficiency. In a weak LOS condition, the D2D links achieve
higher spectral efficiency than the cellular links because, on
average, D2D links have a closer transmission range than
cellular links. In a strong LOS condition, the cellular links
achieve higher spectral efficiency than the D2D links. In this
case, the rate performance of the D2D link deteriorates due to
the increased interference power from closely located D2D
UEs. On the other hand, cellular links employ orthogonal
medium access to ensure only one active transmitter within
the cell at a given resource block. The received signal of
the cellular links is protected against the elevated interference
power, achieving higher cellular rate than the D2D links. We
also note that the spectral efficiency is an increasing function
of w̄. Here, the rate increment of the D2D link is notable over
the whole range of κ , whereas the increment of cellular link
is distinguishable only after κ ≥ 5.

In Figs 2(e)-(h), we have assumed ξ = 1 and w̄ = 1 and used
μ = 1 for Fig. 2(e), κ = 2 for Fig. 2(f), μ = 1 for Fig. 2(g) and
κ = 1 for Fig. 2(h), respectively. Since the spectral efficiency
of a cellular UE Rc is a decreasing function of the spectrum
partition factor β (and R̄d is an increasing function of β),
there is a crossover point β∗ between the spectral efficiencies
of the D2D and cellular link, which depends on the fading
parameters. On average, D2D links have a closer transmission
range than cellular links, hence if a minimum amount of
spectrum is allocated to the D2D link, which is β ≥ β∗,
D2D UEs achieve higher transmission rates than cellular UEs.

On the other hand, if β < β∗, D2D transmission does not
have enough radio resources to achieve rate gains against the
cellular link. As the number of scattering clusters increases,
the spectral efficiency of the cellular UE becomes larger than
that of the D2D UE and the crossover point β∗ shifts towards
the right.

Figs 2(g)-(h) show the effect of the mode selection threshold
θ on the spectral efficiency for κ-μ fading. As shown in the
figure, increasing θ results in less potential D2D UEs choosing
to operate in the cellular mode, leading to a higher average
rate for the cellular link. The spectral efficiency of a potential
D2D UE in D2D mode Rd is a decreasing function of θ due
to the increased co-channel interference over the D2D link.
Since the spectral efficiency of a potential D2D UE R̄d is a
weighted average of Rc and Rd , R̄d is concave function of θ
as indicated in Figs 2(g)-(h).

VII. CONCLUSION

In this paper, we have considered a D2D network overlaid
on an uplink cellular network, where the locations of the
mobile UEs as well as the BSs are modeled as PPP. In partic-
ular, we exploited a novel stochastic geometric approach for
evaluating the D2D network performance under the assump-
tion of generalized fading conditions described by the κ-μ
and η-μ fading models. Using these methods, we evaluated
the spectral efficiency and outage probability of the overlaid
D2D network. Specifically, we observed that the D2D link
provides higher rates than those of the cellular link when
the spectrum partition factor was appropriately chosen. Under
these circumstances, setting a large mode selection threshold
will encourage more UEs to use the D2D mode, which
increases the average rate at the cost of a higher level of
interference and degraded outage probability. However, for
smaller values of the spectrum partition factor, the D2D link
has smaller rates than those of the cellular link. In terms of
the fading parameters, a dominant LOS component (large κ)
or a large number of scattering clusters (large μ) improve
the network performance, i.e., a higher rate and lower outage
probability are achieved. Finally, we also provided numerical
results to demonstrate the performance gains of overlaid D2D
networks compared to traditional cellular networks, where the
latter corresponds to the β = 0 case.

APPENDIX I

For conciseness, in this appendix, we summarize the oper-
ational equalities of some special functions, which are used
in this paper.8 The following properties hold for non-negative
real constants x and y

�(x)�

(
x + 1

2

)
= 21−2x√π�(2x),

(
x

y

)
= �(x + 1)

�(y + 1)�(x − y + 1)
,

�(1 + x)�(1 − x) = 1

sinc (x)
, �

(
1

2

)
= √

π. (30)

8Most of the expressions in Appendix I were introduced in [47], except for
(38) and (39), which were proved in [48].
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The following properties of the hypergeometric function hold
for real constants a, b and c

1 F1(a; b; t) = et
1 F1(b − a; b; −t),

2 F1(a, b; c; z) = (1 − z)−a
2 F1

(
a, c − b; c; z

z − 1

)
, (31)

∫ ∞

0

tα−1

ect 1 F1(a; b; −t)dt = �(α)

cα 2 F1

(
a, α; b; −1

c

)
, (32)

((a − b)z + c − 2a) 2 F1(a, b; c; z)

= (c − a) 2 F1(a − 1, b; c; z) + a (z − 1) 2 F1(a + 1, b; c; z),

(33)∫ ∞

0
xd−1e−bxγ (c, ax) dx

= ac�(d + c)

c(a + b)d+c 2 F1

(
1, d + c; c + 1; a

a + b

)
, (34)

where (32) holds for α > 0 and c > 0, (34) holds for a+b > 0,
b > 0, and c + d > 0. The modified Bessel function Iν(x)
and incomplete gamma function γ (s, x) = ∫ x

0 ts−1e−t dt can
be represented by the hypergeometric function with arbitrary
positive real constants ν, s, b as follows

Iν−1(2
√

bt) = 0 F1(; ν; bt)

�(ν)
(bt)

ν−1
2 ,

γ (s, x) = s−1xse−x
1 F1(1; 1 + s; x),

(35)

where

Iν(x) =
∞∑

n=0

1

n! �(n + ν + 1)

( x

2

)2n+ν
,

γ (s, x)

�(s)
=

∞∑

n=0

xs+ne−x

�(s + n + 1)
,

(36)

0 F1(; ν; bt) = lim
a→∞ 1 F1

(
a; ν; bt

a

)
. (37)

Appell’s function F2 (·) is defined via the Pochhammer symbol
(x)n = �(x+n)

�(x) as follows

F2
(
α; β, β ′; γ, γ′; x, y

) =
∞∑

m=0

∞∑

n=0

(α)m+n (β)m
(
β ′)

n

m! n! (γ )m (γ′)n
xm yn.

(38)
Appell’s function can be reduced to the hypergeometric
function using the following properties

F2
(
d; a, a′; c, c′; 0, y

) = 2 F1(d, a′; c′; y),

F2
(
d; a, a′; c, c′; x, 0

) = 2 F1(d, a; c; x).
(39)

The following integration holds under the following
constraints d > 0 and |k| + |k|′ < |h|

∫ ∞

0
td−1e−ht

1 F1(a; b; kt)1 F1(a
′; b′; k ′t)dt

= h−d�(d)F2

(
d; a, a′; b, b′; k

h
,

k ′

h

)
.

(40)

Gaussian-Laguerre quadratures can be used to evaluate the
integral for a given analytic function g(x) as

∫ ∞

0
e−x g(x)dx =

N∑

n=1

wn f (xn) + RN , (41)

where xn and wn are the n-th abscissa and weight of the N-th
order Laguerre polynomial, respectively. The remainder RN

rapidly converges to zero [47].

APPENDIX II

In this appendix, we provide a proof for Lemma 1. First,
the transmit power of a cellular UE is Pc = Lc

α and the pdf
of Lc is given by (4). Then, the l-th moment of Pc is given
by

E

[
Pc

l
]

=
∫ ∞

0

(
xα

)l
fLc (x)dx

= 2πλb

∫ ∞

0
xαl+1 exp

(
−λbπx2

)
dx

= (λbπ)−
l
δ �

(
l

δ
+ 1

)
,

(42)

where we applied a change of variable, i.e., λbπx2 = t , and
used the notion of the gamma function �(t) = ∫∞

0 xt−1e−xdx
in the last equality. Similarly, the transmit power of D2D mode
is Pd = Ld

α , given that the criterion Ld ≤ θ is met. Then,
the l-th moment of Pd is given by

E

[
Pd

l
]

= E

[
Ld

αl |Ld ≤ θ
]

=
∫ θ

0
xαl fLd (x)

P (Ld ≤ θ)
dx

= 2πλ′

1 − e−λ′πθ2

∫ θ

0
xαl+1 exp

(
−λ′πx2

)
dx

= 1

(λ′π)
l
δ

[
γ
( l

δ + 1, λ′πθ2
)

1 − e−λ′πθ2

]

,

(43)

where we substituted (6) in the second equality, applied a
change of variable, i.e., λ′πx2 = t , and used the notion of
the lower incomplete gamma function γ (s, x) = ∫ x

0 ts−1e−t dt
with λ′ = λ

ξ in the last equality. Since a potential D2D UE
may choose either cellular or D2D mode, the average transmit
power of an arbitrary potential D2D UE is the average of the
two operating modes as follows

E

[
P̄l

d

]
= P(Ld ≤ θ)E

[
Pd

l
]

+ P(Ld > θ)E
[

Pc
l
]
. (44)

where we obtain (7) by substituting (42) and (43) in (44). This
completes the proof.

APPENDIX III

In this appendix, we provide a proof for Lemma 2. The
Laplace transform of the interference at the D2D receiver
LId (s) is evaluated as follows

exp

(
−2πελd

∫ ∞

0

(
1 − E

[
exp

(−sGLα
d r−α

)])
rdr

)
, (45)

where we considered the location independent thinning by
ALOHA transmit probability ε and used the probability gen-
erating functional (PGFL) of PPP [12]. Then, by applying a
change of variable, i.e., sGLα

d r−α = t , and integration by
parts, the Laplace transform LId (s) simplifies as

exp

(
−πελdE

[
(sG)δ L2

d

∫ ∞

0
δt−δ−1 (1 − e−t) dt

])

= exp
(
−πελd sδ� (1 − δ)E

[
L2

d

]
E
[
Gδ

])
,

(46)
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where we used the gamma function �(t) = ∫∞
0 xt−1e−xdx in

the last equality. Hence, (13) for κ-μ fading can be obtained by
substituting λd = qP(Ld ≤ θ)λ, (7), (9) into (46) as follows

cd = πελd� (1 − δ)E

[
L2

d

]
E
[
Gδ

]

= qεξ

sinc (δ)
· γ

(
2, λπθ2 · ξ−1

)
1 F1(μ + δ; μ; μκ)

eμκ

×
(

w̄

(1 + κ)μ

)δ (μ + δ − 1

δ

)
, (47)

where we used (30) in the last equality. Similarly, the Laplace
transform of Id for the η-μ distribution can be evaluated by
using (10). This completes the proof.

APPENDIX IV

In this appendix, we provide a proof for Lemma 3. The
Laplace transform of the interference at the cellular BS LIc (s)
is evaluated as follows [13], [38]

LIc (s) = exp (−2πλbφ(s)) , (48)

where φ(s) is defined as follows

φ(s) =
∫ ∞

0

(
1 − e−πλb x2

)
E

[
1 − e−sG Lα

j x−α
]

xdx

=
∫ ∞

0

∫ x

0
re−πλbr2

E

[
1 − e−sGrαx−α

]
dr · xdx

=
∫ ∞

0
re−πλbr2

∫ ∞

r
x · E

[
1 − e−sGrα x−α

]
dx dr

= I1 · I2, (49)

where the PGFL of non-homogeneous PPP with intensity
function λb

(
1 − exp

(−πλbd2
))

is used in the first equality,
(5) is applied in the second equality, Fubini’s theorem [49] is
utilized to change the order of integration in the third equality
and a change of variable, i.e., (r/x)2 = t , is used in the last
equality. I1 and I2 in (49) represent the following integrals

I1 �
∫ ∞

0
r3 exp

(
−πλbr2

)
dr,

I2 � EG

{∫ 1

0
t−2

(
1 − exp

(
−sGt

1
δ

))
dt

}
, (50)

which convert the double integral into a multiplication of two
single integrals that are independent to each other.

The first integral I1 in (49) can be evaluated by using a
change of variable, i.e., πλbr2 = t , and the definition of the
gamma function �(t) = ∫∞

0 xt−1e−xdx as follows

I1 = 1

2 (πλb)
2

∫ ∞

0
t exp (−t) dt = �(2)

2 (πλb)
2 = 1

2 (πλb)
2 .

(51)

The second integral I2 can be simplified by using a change of
variable, i.e., sGt

1
δ = u, integration by parts and the definition

of the lower incomplete gamma function γ (s, x) as follows

I2 = EG

{
(sG)δ

∫ sG

0
δu−δ−1 (1 − exp (−u)) du

}

= EG
{
(sG)δ γ (1 − δ, sG) − (1 − exp (−sG))

}

= I3 + LG(s) − 1,

(52)

where LG(s) represents the Laplace transform of the channel
coefficient G and I3 � EG

[
(sG)δ γ (1 − δ, sG)

]
.

For κ-μ fading, the integral I3 can be evaluated as follows

I3 = (s�)δ (μκ)
1−μ

2 e−μκ

×
∫ ∞

0
tδ+

μ−1
2 γ (1 − δ, s�t)Iμ−1

(
2
√

μκ t
)

e−t dt

= s� · e−μκ

(1 − δ)�(μ)

×
∫ ∞

0
tμe−(1+s�)t

1 F1(1; 2 − δ; s�t)0 F1(; μ; μκ t)dt

= s�μ·e−μκ

(1 − δ)
2 F1(μ + 1, 1 − δ; 2 − δ; −s�),

(53)

where we applied (9) with �κμ = w̄
μ(1+κ) in the first equality,

utilized (35) in the second equality, then used (37), (39)
and (40) in the last equality. By substituting LG(s) of (9), (51),
(52), (53) to (48), we obtain (16) for the κ-μ distribution.

Similarly for η-μ fading,

I3 = sδ

hμ

∞∑

n=0

(
H

h

)2n (n + μ − 1

μ − 1

)
�−2n−2μ

�(2n + 2μ)

×
∫ ∞

0
xδ+2n+2μ−1γ (1 − δ, sx)e− x

� dx

= s�

hμ(1 − δ)

∞∑

n=0

(2n + 2μ)

(
H

h

)2n (n + μ − 1

μ − 1

)

× 2 F1(1, 1 − δ − 2n − 2μ; 2 − δ; −s�)

= 2s�hμ

(1 − δ)H 2μ

∞∑

n′=μ

n′
(

H

h

)2n′ (
n′ − 1

μ − 1

)

× 2 F1(1, 1 − δ − 2n′; 2 − δ; −s�),

(54)

where we used the series representation of the Bessel
function (36) in the first equality, applied (34) in the second
equality and used a change of variable, i.e., n +μ = n′, in the
last equality. The corresponding Laplace transform of interfer-
ence over η-μ fading can be obtained by substituting LG(s)
of (10), (51), (52), (54) to (48). This completes the proof.

APPENDIX V
In this appendix, we provide a proof for Theorem 1. First,

we consider κ-μ fading and obtain the series representation
of the κ-μ distribution by using (9) and (36) as follows

fG (x) = 1

eμκ

∞∑

n=0

(μκ)n

n!
�−n−μ

�(n + μ)
xn+μ−1 exp

(
− x

�

)
. (55)

Then, the average of an arbitrary function of the SINR
γ = G0

I+N for a given interference I is

E

[
g

(
G0

I + N

)∣∣∣
∣ I

]
= 1

eμκ

∞∑

n=0

(μκ)n

n!

×
∫ ∞

0

xμ+n−1

�(μ + n)
g

(
x

I + N

)
�−n−μ exp

(
− x

�

)
dx

= 1

eμκ

∞∑

n=0

(μκ)n

n!
∫ ∞

0

zμ+n−1

�(μ + n)
g (z) bμ+ne−bzdz,

(56)
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where we applied (55) in the first equality and used a change
of variable, i.e., x

I+N = z and b = (I+N)
� , in the second

equality. The integral in (56) can be evaluated as follows
∫ ∞

0

zμ+n−1

�(μ + n)
g (z)

︸ ︷︷ ︸
u

bμ+ne−bz

︸ ︷︷ ︸
v ′

dz

= −
μ+n−1∑

i=0

gi (z)b
μ+n−i−1e−bz

∣∣
∣
∣
∣
∣

∞

0

+
∫ ∞

0
gμ+n(z)e−bzdz,

(57)

where we applied integration by parts μ + n times, defined
gi (z) in (19), and

gi(0) =
{

0, for i < μ + n − 1

g(0), for i = μ + n − 1
. (58)

Then, the average of an arbitrary function of the SINR for the
κ-μ fading is given by

E

[
g

(
G0

I + N

)]
= E

[
E

[
g

(
G0

I + N

)∣∣
∣∣ I

]]

= g(0) + 1

eμκ

∞∑

n=0

(μκ)n

n! ϕκμ(n),

(59)

where we applied 1
eμκ

∑∞
n=0

(μκ)n

n! = 1. Similarly, (20) can be
evaluated for η-μ fading by repeatedly applying integration by
parts. This completes the proof.

APPENDIX VI

In this appendix, we express the CDF of the κ-μ and η-μ
distributions using a series representation. First, we integrate
the PDF of the κ-μ distribution in (55) as follows

FG(x) =
∫ x

0
fG(t)dt = 1

eμκ

∞∑

n=0

(μκ)n

n!
γ
(
n + μ, x

�

)

�(n + μ)

=
∞∑

n=0

∞∑

m=0

(μκ)ne−μκ

n! · �(n + μ + m + 1)

( x

�

)n+μ+m
e− x

�

=
∞∑

n=0

∞∑

m=0

bκμ
n,m

( x

�

)n+μ+m
exp

(
− x

�

)
,

(60)

where we used the definition of the incomplete gamma func-
tion γ (s, x) = ∫ x

0 ts−1e−t dt in the second equality, applied
(36) in the third equality, denoted �κμ = w̄

μ(1+κ) and bκμ
n,m �

(μκ)ne−μκ

n!·�(n+μ+m+1) . Similarly, for the η-μ distribution, the series
representation of its CDF is given by

FG(x) = 1

hμ

∞∑

n=0

(
H

h

)2n (n + μ − 1

μ − 1

)
γ
(
2n + 2μ, x

�

)

�(2n + 2μ)

=
∞∑

n=0

∞∑

m=0

bημ
n,m

( x

�

)m+2n+2μ
exp

(
− x

�

)
,

(61)

where bημ
n,m � 1

hμ

( H
h

)2n (n+μ−1
μ−1

) 1
�(2n+2μ+m+1) .
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