8 research outputs found

    Motivic Pattern Classification of Music Audio Signals Combining Residual and LSTM Networks

    Get PDF
    Motivic pattern classification from music audio recordings is a challenging task. More so in the case of a cappella flamenco cantes, characterized by complex melodic variations, pitch instability, timbre changes, extreme vibrato oscillations, microtonal ornamentations, and noisy conditions of the recordings. Convolutional Neural Networks (CNN) have proven to be very effective algorithms in image classification. Recent work in large-scale audio classification has shown that CNN architectures, originally developed for image problems, can be applied successfully to audio event recognition and classification with little or no modifications to the networks. In this paper, CNN architectures are tested in a more nuanced problem: flamenco cantes intra-style classification using small motivic patterns. A new architecture is proposed that uses the advantages of residual CNN as feature extractors, and a bidirectional LSTM layer to exploit the sequential nature of musical audio data. We present a full end-to-end pipeline for audio music classification that includes a sequential pattern mining technique and a contour simplification method to extract relevant motifs from audio recordings. Mel-spectrograms of the extracted motifs are then used as the input for the different architectures tested. We investigate the usefulness of motivic patterns for the automatic classification of music recordings and the effect of the length of the audio and corpus size on the overall classification accuracy. Results show a relative accuracy improvement of up to 20.4% when CNN architectures are trained using acoustic representations from motivic patterns

    Downbeat tracking with multiple features and deep neural networks

    No full text
    International audience<p>In this paper, we introduce a novel method for the automatic estimation of downbeat positions from music signals. Our system relies on the computation of musically inspired features capturing important aspects of music such as timbre, harmony, rhythmic patterns, or local similarities in both timbre and harmony. It then uses several independent deep neural networks to learn higher-level representations. The downbeat sequences are finally obtained thanks to a temporal decoding step based on the Viterbi algorithm. The comparative evaluation conducted on varied datasets demonstrates the efficiency and robustness across different music styles of our approach.</p
    corecore