893 research outputs found

    Timing and Carrier Synchronization in Wireless Communication Systems: A Survey and Classification of Research in the Last 5 Years

    Get PDF
    Timing and carrier synchronization is a fundamental requirement for any wireless communication system to work properly. Timing synchronization is the process by which a receiver node determines the correct instants of time at which to sample the incoming signal. Carrier synchronization is the process by which a receiver adapts the frequency and phase of its local carrier oscillator with those of the received signal. In this paper, we survey the literature over the last 5 years (2010–2014) and present a comprehensive literature review and classification of the recent research progress in achieving timing and carrier synchronization in single-input single-output (SISO), multiple-input multiple-output (MIMO), cooperative relaying, and multiuser/multicell interference networks. Considering both single-carrier and multi-carrier communication systems, we survey and categorize the timing and carrier synchronization techniques proposed for the different communication systems focusing on the system model assumptions for synchronization, the synchronization challenges, and the state-of-the-art synchronization solutions and their limitations. Finally, we envision some future research directions

    On the Performance Analysis of Cooperative Vehicular Communication

    Get PDF
    Vehicular networking is envisioned to be a key technology area for significant growth in the coming years. Although the expectations for this emerging technology are set very high, many practical aspects remain still unsolved for a vast deployment of vehicular networks. This dissertation addresses the enabling physical layer techniques to meet the challenges in vehicular networks operating in mobile wireless environments. Considering the infrastructure-less nature of vehicular networks, we envision cooperative diversity well positioned to meet the demanding requirements of vehicular networks with their underlying distributed structure. Cooperative diversity has been proposed as a powerful means to enhance the performance of high-rate communications over wireless fading channels. It realizes spatial diversity advantages in a distributed manner where a node uses others antennas to relay its message creating a virtual antenna array. Although cooperative diversity has garnered much attention recently, it has not yet been fully explored in the context of vehicular networks considering the unique characteristics of vehicular networks, this dissertation provides an error performance analysis study of cooperative transmission schemes for various deployment and traffic scenarios. In the first part of this dissertation, we investigate the performance of a cooperative vehicle-to-vehicle (V2V) system with amplify-and-forward relaying for typical traffic scenarios under city/urban settings and a highway area. We derive pairwise error probability (PEP) expressions and demonstrate the achievable diversity gains. The effect of imperfect channel state information (CSI) is also studied through an asymptotical PEP analysis. We present Monte-Carlo simulations to confirm the analytical derivations and present the error rate performance of the vehicular scheme with perfect and imperfect-CSI. In the second part, we consider road-to-vehicle (R2V) communications in which roadside access points use cooperating vehicles as relaying terminals. Under the assumption of decode-and-forward relaying, we derive PEP expressions for single-relay and multi-relay scenarios. In the third part, we consider a cooperative multi-hop V2V system in which direct transmission is not possible and investigate its performance through the PEP derivation and diversity gain analysis. Monte-Carlo simulations are further provided to con firm the analytical derivations and provide insight into the error rate performance improvement

    Effective relaying mechanisms in future device to device communication : a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in School of Food and Advanced Technology at Massey University, Palmerston North, New Zealand

    Get PDF
    Listed in 2020 Dean's List of Exceptional ThesesFuture wireless networks embrace a large number of assorted network-enabled devices such as mobile phones, sensor nodes, drones, smart gears, etc., with different applications and purpose, but they all share one common characteristic which is the dependence on strong network connectivity. Growing demand of internet-connected devices and data applications is burdensome for the currently deployed cellular wireless networks. For this reason, future networks are likely to embrace cutting-edge technological advancements in network infrastructure such as, small cells, device-to-device communication, non-orthogonal multiple access scheme (NOMA), multiple-input-multiple out, etc., to increase spectral efficiency, improve network coverage, and reduce network latency. Individual devices acquire network connectivity by accessing radio resources in orthogonal manner which limits spectrum utilisation resulting in data congestion and latency in dense cellular networks. NOMA is a prominent scheme in which multiple users are paired together and access radio resources by slicing the power domain. While several research works study power control mechanisms by base station to communicate with NOMA users, it is equally important to maintain distinction between the users in uplink communication. Furthermore, these users in a NOMA pair are able to perform cooperative relaying where one device assists another device in a NOMA pair to increase signal diversity. However, the benefits of using a NOMA pair in improving network coverage is still overlooked. With a varierty of cellular connected devices, use of NOMA is studied on devices with similar channel characteristics and the need of adopting NOMA for aerial devices has not been investigated. Therefore, this research establishes a novel mechanism to offer distinction in uplink communication for NOMA pair, a relaying scheme to extend the coverage of a base station by utilising NOMA pair and a ranking scheme for ground and aerial devices to access radio resources by NOMA

    Simultaneous wireless information and power transfer (SWIPT) in cooperative networks

    Get PDF
    2019 Spring.Includes bibliographical references.In recent years, the capacity and charging speed of batteries have become the bottleneck of mobile communications systems. Energy harvesting (EH) is regarded as a promising technology to significantly extend the lifetime of battery-powered devices. Among many EH technologies, simultaneous wireless information and power transfer (SWIPT) proposes to harvest part of the energy carried by the wireless communication signals. In particular, SWIPT has been successfully applied to energy-constrained relays that are mainly or exclusively powered by the energy harvested from the received signals. These relays are known as EH relays, which attract significant attention in both the academia and the industry. In this research, we investigate the performance of SWIPT-based EH cooperative networks and the optimization problems therein. Due to hardware limitations, the energy harvesting circuit cannot decode the signal directly. Power splitting (PS) is a popular and effective solution to this problem. Therefore, we focus on PS based SWIPT in this research. First, different from existing work that employs time-switching (TS) based SWIPT, we propose to employ PS based SWIPT for a truly full-duplex (FD) EH relay network, where the information reception and transmission take place simultaneously at the relay all the time. This more thorough exploitation of the FD feature consequently leads to a significant capacity improvement compared with existing alternatives in the literature. Secondly, when multiple relays are available in the network, we explore the relay selection (RS) and network beamforming techniques in EH relay networks. Assuming orthogonal bandwidth allocation, both single relay selection (SRS) and general relay selection (GRS) without the limit on the number of cooperating relays are investigated and the corresponding RS methods are proposed. We will show that our proposed heuristic GRS methods outperform the SRS methods and achieve very similar performance compared with the optimal RS method achieved by exhaustive search but with dramatically reduced complexity. Under the shared bandwidth assumption, network beamforming among EH relays is investigated. We propose a joint PS factor optimization method based on semidefinite relaxation. Simulations show that network beamforming achieves the best performance among all other cooperative techniques. Finally, we study the problem of power allocation and PS factor optimization for SWIPT over doubly-selective wireless channels. In contrast to existing work in the literature, we take the channel variation in both time and frequency domains into consideration and jointly optimize the power allocation and the PS factors. The objective is to maximize the achievable data rate with constraints on the delivered energy in a time window. Since the problem is difficult to solve directly due to its nonconvexity, we proposed a two-step approach, named joint power allocation and splitting (JoPAS), to solve the problem along the time and frequency dimensions sequentially. Simulations show significantly improved performance compared with the existing dynamic power splitting scheme. A suboptimal heuristic algorithm, named decoupled power allocation and splitting (DePAS), is also proposed with significantly reduced computational complexity and simulations demonstrate its near-optimum performance

    Power Beacon’s deployment optimization for wirelessly powering massive Internet of Things networks

    Get PDF
    Abstract. The fifth-generation (5G) and beyond wireless cellular networks promise the native support to, among other use cases, the so-called Internet of Things (IoT). Different from human-based cellular services, IoT networks implement a novel vision where ordinary machines possess the ability to autonomously sense, actuate, compute, and communicate throughout the Internet. However, as the number of connected devices grows larger, an urgent demand for energy-efficient communication technologies arises. A key challenge related to IoT devices is that their very small form factor allows them to carry just a tiny battery that might not be even possible to replace due to installation conditions, or too costly in terms of maintenance because of the massiveness of the network. This issue limits the lifetime of the network and compromises its reliability. Wireless energy transfer (WET) has emerged as a potential candidate to replenish sensors’ batteries or to sustain the operation of battery-free devices, as it provides a controllable source of energy over-the-air. Therefore, WET eliminates the need for regular maintenance, allows sensors’ form factor reduction, and reduces the battery disposal that contributes to the environment pollution. In this thesis, we review some WET-enabled scenarios and state-of-the-art techniques for implementing WET in IoT networks. In particular, we focus our attention on the deployment optimization of the so-called power beacons (PBs), which are the energy transmitters for charging a massive IoT deployment subject to a network-wide probabilistic energy outage constraint. We assume that IoT sensors’ positions are unknown at the PBs, and hence we maximize the average incident power on the worst network location. We propose a linear-time complexity algorithm for optimizing the PBs’ positions that outperforms benchmark methods in terms of minimum average incident power and computation time. Then, we also present some insights on the maximum coverage area under certain propagation conditions

    Distributed Power-Generation Systems and Protection

    Get PDF

    Multiple Symbol Double Differential Transmission for Amplify-and-Forward Cooperative Diversity Networks in Time-Varying Channel

    Get PDF
    In the cooperative diversity wireless networks, the task to perform cooperation communication amongst neighbouring nodes is very challenging. Subjected to rapidly increasing mobility of the nodes i.e. wireless devices in fast moving vehicles and trains, at the destination end the receiver may not ideally estimate the channel characteristics and frequency offsets. Due to these circumstances which results in time-varying channels, the performance network degrades drastically. In order to enhance the performance in such environment, Double Differential (DD) modulation employing multiple symbol based detection is proposed which takes mobility environment of different nodes into consideration. By utilizing the DD transmission approach, the channel properties and frequency offset estimation is omitted in the amplify-andforward cooperative networks. The MATLAB simulation and numerical analysis on Bit Error Rate (BER) are carried out with consideration on considering flat-fading (i.e. the frequency non-selective) Rayleigh channels and when frequency offsets. The results depict that the proposed method over fading channels without channel estimation requirements and in the presence of frequency offsets performs better as compared to the conventional DD transmission. Optimized power allocation is also carried out to enhance the network performance by minimizing the BER analytical expression. It is demonstrated that the proposed power allocation scheme offers enhancement over the equally distributed power allocation approach
    • …
    corecore