584,356 research outputs found

    Deep Reinforcement Learning with Double Q-learning

    Full text link
    The popular Q-learning algorithm is known to overestimate action values under certain conditions. It was not previously known whether, in practice, such overestimations are common, whether they harm performance, and whether they can generally be prevented. In this paper, we answer all these questions affirmatively. In particular, we first show that the recent DQN algorithm, which combines Q-learning with a deep neural network, suffers from substantial overestimations in some games in the Atari 2600 domain. We then show that the idea behind the Double Q-learning algorithm, which was introduced in a tabular setting, can be generalized to work with large-scale function approximation. We propose a specific adaptation to the DQN algorithm and show that the resulting algorithm not only reduces the observed overestimations, as hypothesized, but that this also leads to much better performance on several games.Comment: AAAI 201

    Double Q-learning

    Get PDF
    In some stochastic environments the well-known reinforcement learning algorithm Q-learning performs very poorly. This poor performance is caused by large overestimations of action values, which result from a positive bias that is introduced because Q-learning uses the maximum action value as an approximation for the maximum expected action value. We introduce an alternative way to approximate the maximum expected value for any set of random variables. The obtained double estimator method is shown to sometimes underestimate rather than overestimate the maximum expected value. We apply the double estimator to Q-learning to construct Double Q-learning, a new off-policy reinforcement learning algorithm. We show the new algorithm converges to the optimal policy and that it performs well in some settings in which Q-learning performs poorly due to its overestimation

    Near-optimal energy management for plug-in hybrid fuel cell and battery propulsion using deep reinforcement learning

    Get PDF
    Plug-in hybrid fuel cell and battery propulsion systems appear promising for decarbonising transportation applications such as road vehicles and coastal ships. However, it is challenging to develop optimal or near-optimal energy management for these systems without exact knowledge of future load profiles. Although efforts have been made to develop strategies in a stochastic environment with discrete state space using Q-learning and Double Q-learning, such tabular reinforcement learning agents’ effectiveness is limited due to the state space resolution. This article aims to develop an improved energy management system using deep reinforcement learning to achieve enhanced cost-saving by extending discrete state parameters to be continuous. The improved energy management system is based upon the Double Deep Q-Network. Real-world collected stochastic load profiles are applied to train the Double Deep Q-Network for a coastal ferry. The results suggest that the Double Deep Q-Network acquired energy management strategy has achieved a further 5.5% cost reduction with a 93.8% decrease in training time, compared to that produced by the Double Q-learning agent in discrete state space without function approximations. In addition, this article also proposes an adaptive deep reinforcement learning energy management scheme for practical hybrid-electric propulsion systems operating in changing environments

    Towards Monocular Vision based Obstacle Avoidance through Deep Reinforcement Learning

    Full text link
    Obstacle avoidance is a fundamental requirement for autonomous robots which operate in, and interact with, the real world. When perception is limited to monocular vision avoiding collision becomes significantly more challenging due to the lack of 3D information. Conventional path planners for obstacle avoidance require tuning a number of parameters and do not have the ability to directly benefit from large datasets and continuous use. In this paper, a dueling architecture based deep double-Q network (D3QN) is proposed for obstacle avoidance, using only monocular RGB vision. Based on the dueling and double-Q mechanisms, D3QN can efficiently learn how to avoid obstacles in a simulator even with very noisy depth information predicted from RGB image. Extensive experiments show that D3QN enables twofold acceleration on learning compared with a normal deep Q network and the models trained solely in virtual environments can be directly transferred to real robots, generalizing well to various new environments with previously unseen dynamic objects.Comment: Accepted by RSS 2017 workshop New Frontiers for Deep Learning in Robotic
    • …
    corecore