21,964 research outputs found

    Rotational Doppler effect in left-handed materials

    Full text link
    We explain the rotational Doppler effect associated with light beams carrying with orbital angular momentum in left-handed materials (LHMs). We demonstrate that the rotational Doppler effect in LHMs is unreversed, which is significantly different from the linear Doppler effect. The physics underlying this intriguing effect is the combined contributions of negative phase velocity and inverse screw of wave-front. In the normal dispersion region, the rotational Doppler effect induces a upstream energy flow but a downstream momentum flow. In the anomalous dispersion region, however, the rotational Doppler effect produces a downstream energy flow but a upstream momentum flow. We theoretically predict that the rotational Doppler effect can induce a transfer of angular momentum of the LHM to orbital angular momentum of the beam.Comment: 6 pages, 3 figure

    Japanese Doppler Effect

    Get PDF

    Visualizing the Doppler Effect

    Full text link
    The development of Information and Communication Technologies suggests some spectacular changes in the methods used for teaching scientific subjects. Nowadays, the development of software and hardware makes it possible to simulate processes as close to reality as we want. However, when we are trying to explain some complex physical processes, it is better to simplify the problem under study using simplified pictures of the total process by eliminating some elements that make it difficult to understand this process. In this work we focus our attention on the Doppler effect which requires the space-time visualization that is very difficult to obtain using the traditional teaching resources. We have designed digital simulations as a complement of the theoretical explanation in order to help students understand this phenomenon.Comment: 16 pages, 8 figure

    Note: Axiomatic Derivation of the Doppler Factor and Related Relativistic Laws

    Get PDF
    The formula for the relativistic Doppler effect is investigated in the context of two compelling invariance axioms. The axioms are expressed in terms of an abstract operation generalizing the relativistic addition of velocities. We prove the following results. (1) If the standard representation for the operation is not assumed a priori, then each of the two axioms is consistent with both the relativistic Doppler effect formula and the Lorentz-Fitzgerald Contraction. (2) If the standard representation for the operation is assumed, then the two axioms are equivalent to each other and to the relativistic Doppler effect formula. Thus, the axioms are inconsistent with the Lorentz-FitzGerald Contraction in this case. (3) If the Lorentz-FitzGerald Contraction is assumed, then the two axioms are equivalent to each other and to a different mathematical representation for the operation which applies in the case of perpendicular motions. The relativistic Doppler effect is derived up to one positive exponent parameter (replacing the square root). We prove these facts under regularity and other reasonable background conditions.Comment: 12 page

    Reverse Doppler Effect of Sound

    Full text link
    We report observation of reverse Doppler effect in a double negative acoustic metamaterial. The metamaterial exhibited negative phase velocity and positive group velocity. The dispersion relation is such that the wavelength corresponding to higher frequency is longer. We observed that the frequency was down-shifted for the approaching source, and up-shifted when the source receded

    Relativistic Doppler effect in quantum communication

    Get PDF
    When an electromagnetic signal propagates in vacuo, a polarization detector cannot be rigorously perpendicular to the wave vector because of diffraction effects. The vacuum behaves as a noisy channel, even if the detectors are perfect. The ``noise'' can however be reduced and nearly cancelled by a relative motion of the observer toward the source. The standard definition of a reduced density matrix fails for photon polarization, because the transversality condition behaves like a superselection rule. We can however define an effective reduced density matrix which corresponds to a restricted class of positive operator-valued measures. There are no pure photon qubits, and no exactly orthogonal qubit states.Comment: 10 pages LaTe
    corecore