52 research outputs found

    Presburger arithmetic, rational generating functions, and quasi-polynomials

    Full text link
    Presburger arithmetic is the first-order theory of the natural numbers with addition (but no multiplication). We characterize sets that can be defined by a Presburger formula as exactly the sets whose characteristic functions can be represented by rational generating functions; a geometric characterization of such sets is also given. In addition, if p=(p_1,...,p_n) are a subset of the free variables in a Presburger formula, we can define a counting function g(p) to be the number of solutions to the formula, for a given p. We show that every counting function obtained in this way may be represented as, equivalently, either a piecewise quasi-polynomial or a rational generating function. Finally, we translate known computational complexity results into this setting and discuss open directions.Comment: revised, including significant additions explaining computational complexity results. To appear in Journal of Symbolic Logic. Extended abstract in ICALP 2013. 17 page

    Turing machines with access to history

    Get PDF
    AbstractWe study remembering Turing machines, that is Turing machines with the capability to access freely the history of their computations. These devices can detect in one step via the oracle mechanism whether the storage tapes have exactly the same contents at the moment of inquiry as at some past moment in the computation. The s(n)-space-bounded remembering Turing machines are shown to be able to recognize exactly the languages in the time-complexity class determined by bounds exponential in s(n). This is proved for deterministic, non-deterministic, and alternating Turing machines

    Subclasses of Presburger Arithmetic and the Weak EXP Hierarchy

    Full text link
    It is shown that for any fixed i>0i>0, the Σi+1\Sigma_{i+1}-fragment of Presburger arithmetic, i.e., its restriction to i+1i+1 quantifier alternations beginning with an existential quantifier, is complete for ΣiEXP\mathsf{\Sigma}^{\mathsf{EXP}}_{i}, the ii-th level of the weak EXP hierarchy, an analogue to the polynomial-time hierarchy residing between NEXP\mathsf{NEXP} and EXPSPACE\mathsf{EXPSPACE}. This result completes the computational complexity landscape for Presburger arithmetic, a line of research which dates back to the seminal work by Fischer & Rabin in 1974. Moreover, we apply some of the techniques developed in the proof of the lower bound in order to establish bounds on sets of naturals definable in the Σ1\Sigma_1-fragment of Presburger arithmetic: given a Σ1\Sigma_1-formula Φ(x)\Phi(x), it is shown that the set of non-negative solutions is an ultimately periodic set whose period is at most doubly-exponential and that this bound is tight.Comment: 10 pages, 2 figure

    Integer Vector Addition Systems with States

    Full text link
    This paper studies reachability, coverability and inclusion problems for Integer Vector Addition Systems with States (ZVASS) and extensions and restrictions thereof. A ZVASS comprises a finite-state controller with a finite number of counters ranging over the integers. Although it is folklore that reachability in ZVASS is NP-complete, it turns out that despite their naturalness, from a complexity point of view this class has received little attention in the literature. We fill this gap by providing an in-depth analysis of the computational complexity of the aforementioned decision problems. Most interestingly, it turns out that while the addition of reset operations to ordinary VASS leads to undecidability and Ackermann-hardness of reachability and coverability, respectively, they can be added to ZVASS while retaining NP-completness of both coverability and reachability.Comment: 17 pages, 2 figure

    Tightening the Complexity of Equivalence Problems for Commutative Grammars

    Get PDF
    We show that the language equivalence problem for regular and context-free commutative grammars is coNEXP-complete. In addition, our lower bound immediately yields further coNEXP-completeness results for equivalence problems for communication-free Petri nets and reversal-bounded counter automata. Moreover, we improve both lower and upper bounds for language equivalence for exponent-sensitive commutative grammars.Comment: 21 page

    On the Complexity of Quantified Integer Programming

    Get PDF
    Quantified integer programming is the problem of deciding assertions of the form Q_k x_k ... forall x_2 exists x_1 : A * x >= c where vectors of variables x_k,..,x_1 form the vector x, all variables are interpreted over N (alternatively, over Z), and A and c are a matrix and vector over Z of appropriate sizes. We show in this paper that quantified integer programming with alternation depth k is complete for the kth level of the polynomial hierarchy

    Unary Pushdown Automata and Straight-Line Programs

    Full text link
    We consider decision problems for deterministic pushdown automata over a unary alphabet (udpda, for short). Udpda are a simple computation model that accept exactly the unary regular languages, but can be exponentially more succinct than finite-state automata. We complete the complexity landscape for udpda by showing that emptiness (and thus universality) is P-hard, equivalence and compressed membership problems are P-complete, and inclusion is coNP-complete. Our upper bounds are based on a translation theorem between udpda and straight-line programs over the binary alphabet (SLPs). We show that the characteristic sequence of any udpda can be represented as a pair of SLPs---one for the prefix, one for the lasso---that have size linear in the size of the udpda and can be computed in polynomial time. Hence, decision problems on udpda are reduced to decision problems on SLPs. Conversely, any SLP can be converted in logarithmic space into a udpda, and this forms the basis for our lower bound proofs. We show coNP-hardness of the ordered matching problem for SLPs, from which we derive coNP-hardness for inclusion. In addition, we complete the complexity landscape for unary nondeterministic pushdown automata by showing that the universality problem is Π2P\Pi_2 \mathrm P-hard, using a new class of integer expressions. Our techniques have applications beyond udpda. We show that our results imply Π2P\Pi_2 \mathrm P-completeness for a natural fragment of Presburger arithmetic and coNP lower bounds for compressed matching problems with one-character wildcards

    Emptiness Problems for Integer Circuits

    Get PDF
    • …
    corecore