528 research outputs found

    Sign rank versus VC dimension

    Full text link
    This work studies the maximum possible sign rank of N×NN \times N sign matrices with a given VC dimension dd. For d=1d=1, this maximum is {three}. For d=2d=2, this maximum is Θ~(N1/2)\tilde{\Theta}(N^{1/2}). For d>2d >2, similar but slightly less accurate statements hold. {The lower bounds improve over previous ones by Ben-David et al., and the upper bounds are novel.} The lower bounds are obtained by probabilistic constructions, using a theorem of Warren in real algebraic topology. The upper bounds are obtained using a result of Welzl about spanning trees with low stabbing number, and using the moment curve. The upper bound technique is also used to: (i) provide estimates on the number of classes of a given VC dimension, and the number of maximum classes of a given VC dimension -- answering a question of Frankl from '89, and (ii) design an efficient algorithm that provides an O(N/log(N))O(N/\log(N)) multiplicative approximation for the sign rank. We also observe a general connection between sign rank and spectral gaps which is based on Forster's argument. Consider the N×NN \times N adjacency matrix of a Δ\Delta regular graph with a second eigenvalue of absolute value λ\lambda and ΔN/2\Delta \leq N/2. We show that the sign rank of the signed version of this matrix is at least Δ/λ\Delta/\lambda. We use this connection to prove the existence of a maximum class C{±1}NC\subseteq\{\pm 1\}^N with VC dimension 22 and sign rank Θ~(N1/2)\tilde{\Theta}(N^{1/2}). This answers a question of Ben-David et al.~regarding the sign rank of large VC classes. We also describe limitations of this approach, in the spirit of the Alon-Boppana theorem. We further describe connections to communication complexity, geometry, learning theory, and combinatorics.Comment: 33 pages. This is a revised version of the paper "Sign rank versus VC dimension". Additional results in this version: (i) Estimates on the number of maximum VC classes (answering a question of Frankl from '89). (ii) Estimates on the sign rank of large VC classes (answering a question of Ben-David et al. from '03). (iii) A discussion on the computational complexity of computing the sign-ran

    Consistency-Checking Problems: A Gateway to Parameterized Sample Complexity

    Full text link
    Recently, Brand, Ganian and Simonov introduced a parameterized refinement of the classical PAC-learning sample complexity framework. A crucial outcome of their investigation is that for a very wide range of learning problems, there is a direct and provable correspondence between fixed-parameter PAC-learnability (in the sample complexity setting) and the fixed-parameter tractability of a corresponding "consistency checking" search problem (in the setting of computational complexity). The latter can be seen as generalizations of classical search problems where instead of receiving a single instance, one receives multiple yes- and no-examples and is tasked with finding a solution which is consistent with the provided examples. Apart from a few initial results, consistency checking problems are almost entirely unexplored from a parameterized complexity perspective. In this article, we provide an overview of these problems and their connection to parameterized sample complexity, with the primary aim of facilitating further research in this direction. Afterwards, we establish the fixed-parameter (in)-tractability for some of the arguably most natural consistency checking problems on graphs, and show that their complexity-theoretic behavior is surprisingly very different from that of classical decision problems. Our new results cover consistency checking variants of problems as diverse as (k-)Path, Matching, 2-Coloring, Independent Set and Dominating Set, among others

    Computational and Robotic Models of Early Language Development: A Review

    Get PDF
    We review computational and robotics models of early language learning and development. We first explain why and how these models are used to understand better how children learn language. We argue that they provide concrete theories of language learning as a complex dynamic system, complementing traditional methods in psychology and linguistics. We review different modeling formalisms, grounded in techniques from machine learning and artificial intelligence such as Bayesian and neural network approaches. We then discuss their role in understanding several key mechanisms of language development: cross-situational statistical learning, embodiment, situated social interaction, intrinsically motivated learning, and cultural evolution. We conclude by discussing future challenges for research, including modeling of large-scale empirical data about language acquisition in real-world environments. Keywords: Early language learning, Computational and robotic models, machine learning, development, embodiment, social interaction, intrinsic motivation, self-organization, dynamical systems, complexity.Comment: to appear in International Handbook on Language Development, ed. J. Horst and J. von Koss Torkildsen, Routledg

    Protecting Temporal Fingerprints with Synchronized Chaotic Circuits

    Get PDF
    In recent years, connected autonomous vehicles (CAVs) feature an increasing number of Ethernet-enabled electronic control units (ECUs), thereby creating more threat vectors that provide access to the Controller Area Network (CAN) Bus. Currently, mitigation techniques to protect the CAN bus from compromised ECU units in vehicle ad hoc networks (VANET) often utilize classical cryptographic techniques. However, ECUs often have temporal signatures that leak internal state information to eavesdropping attackers who can leverage temporal properties for longitudinal attacks. Unfortunately, these types of attacks are difficult to defend against using classical encryption schemes and intrusion detection systems (IDS) due to their high computational demands and ineffectiveness at protecting CAVs throughout the duration of their long lifespans. In order to address these problems, we propose a novel cryptographic framework that protects information embedded in ECU network communications by delivering an encryption system that periodically salts the temporal dynamics of individual ECU units with chaotic signals that are difficult to learn. We demonstrate the framework on two datasets, and our results show that the underlying temporal signatures cannot be approximated by state-of-the-art learning algorithms over finite time horizons
    corecore