1,094 research outputs found

    Domain-adaptive discriminative one-shot learning of gestures

    Get PDF
    The objective of this paper is to recognize gestures in videos - both localizing the gesture and classifying it into one of multiple classes. We show that the performance of a gesture classifier learnt from a single (strongly supervised) training example can be boosted significantly using a 'reservoir' of weakly supervised gesture examples (and that the performance exceeds learning from the one-shot example or reservoir alone). The one-shot example and weakly supervised reservoir are from different 'domains' (different people, different videos, continuous or non-continuous gesturing, etc), and we propose a domain adaptation method for human pose and hand shape that enables gesture learning methods to generalise between them. We also show the benefits of using the recently introduced Global Alignment Kernel [12], instead of the standard Dynamic Time Warping that is generally used for time alignment. The domain adaptation and learning methods are evaluated on two large scale challenging gesture datasets: one for sign language, and the other for Italian hand gestures. In both cases performance exceeds the previous published results, including the best skeleton-classification-only entry in the 2013 ChaLearn challenge

    AutoFi: Towards Automatic WiFi Human Sensing via Geometric Self-Supervised Learning

    Full text link
    WiFi sensing technology has shown superiority in smart homes among various sensors for its cost-effective and privacy-preserving merits. It is empowered by Channel State Information (CSI) extracted from WiFi signals and advanced machine learning models to analyze motion patterns in CSI. Many learning-based models have been proposed for kinds of applications, but they severely suffer from environmental dependency. Though domain adaptation methods have been proposed to tackle this issue, it is not practical to collect high-quality, well-segmented and balanced CSI samples in a new environment for adaptation algorithms, but randomly-captured CSI samples can be easily collected. {\color{black}In this paper, we firstly explore how to learn a robust model from these low-quality CSI samples, and propose AutoFi, an annotation-efficient WiFi sensing model based on a novel geometric self-supervised learning algorithm.} The AutoFi fully utilizes unlabeled low-quality CSI samples that are captured randomly, and then transfers the knowledge to specific tasks defined by users, which is the first work to achieve cross-task transfer in WiFi sensing. The AutoFi is implemented on a pair of Atheros WiFi APs for evaluation. The AutoFi transfers knowledge from randomly collected CSI samples into human gait recognition and achieves state-of-the-art performance. Furthermore, we simulate cross-task transfer using public datasets to further demonstrate its capacity for cross-task learning. For the UT-HAR and Widar datasets, the AutoFi achieves satisfactory results on activity recognition and gesture recognition without any prior training. We believe that the AutoFi takes a huge step toward automatic WiFi sensing without any developer engagement.Comment: The paper has been accepted by IEEE Internet of Things Journa

    Large-scale interactive exploratory visual search

    Get PDF
    Large scale visual search has been one of the challenging issues in the era of big data. It demands techniques that are not only highly effective and efficient but also allow users conveniently express their information needs and refine their intents. In this thesis, we focus on developing an exploratory framework for large scale visual search. We also develop a number of enabling techniques in this thesis, including compact visual content representation for scalable search, near duplicate video shot detection, and action based event detection. We propose a novel scheme for extremely low bit rate visual search, which sends compressed visual words consisting of vocabulary tree histogram and descriptor orientations rather than descriptors. Compact representation of video data is achieved through identifying keyframes of a video which can also help users comprehend visual content efficiently. We propose a novel Bag-of-Importance model for static video summarization. Near duplicate detection is one of the key issues for large scale visual search, since there exist a large number nearly identical images and videos. We propose an improved near-duplicate video shot detection approach for more effective shot representation. Event detection has been one of the solutions for bridging the semantic gap in visual search. We particular focus on human action centred event detection. We propose an enhanced sparse coding scheme to model human actions. Our proposed approach is able to significantly reduce computational cost while achieving recognition accuracy highly comparable to the state-of-the-art methods. At last, we propose an integrated solution for addressing the prime challenges raised from large-scale interactive visual search. The proposed system is also one of the first attempts for exploratory visual search. It provides users more robust results to satisfy their exploring experiences

    Modeling Temporal Dynamics and Spatial Configurations of Actions Using Two-Stream Recurrent Neural Networks

    Full text link
    Recently, skeleton based action recognition gains more popularity due to cost-effective depth sensors coupled with real-time skeleton estimation algorithms. Traditional approaches based on handcrafted features are limited to represent the complexity of motion patterns. Recent methods that use Recurrent Neural Networks (RNN) to handle raw skeletons only focus on the contextual dependency in the temporal domain and neglect the spatial configurations of articulated skeletons. In this paper, we propose a novel two-stream RNN architecture to model both temporal dynamics and spatial configurations for skeleton based action recognition. We explore two different structures for the temporal stream: stacked RNN and hierarchical RNN. Hierarchical RNN is designed according to human body kinematics. We also propose two effective methods to model the spatial structure by converting the spatial graph into a sequence of joints. To improve generalization of our model, we further exploit 3D transformation based data augmentation techniques including rotation and scaling transformation to transform the 3D coordinates of skeletons during training. Experiments on 3D action recognition benchmark datasets show that our method brings a considerable improvement for a variety of actions, i.e., generic actions, interaction activities and gestures.Comment: Accepted to IEEE International Conference on Computer Vision and Pattern Recognition (CVPR) 201

    Transfer: Cross Modality Knowledge Transfer using Adversarial Networks -- A Study on Gesture Recognition

    Full text link
    Knowledge transfer across sensing technology is a novel concept that has been recently explored in many application domains, including gesture-based human computer interaction. The main aim is to gather semantic or data driven information from a source technology to classify / recognize instances of unseen classes in the target technology. The primary challenge is the significant difference in dimensionality and distribution of feature sets between the source and the target technologies. In this paper, we propose TRANSFER, a generic framework for knowledge transfer between a source and a target technology. TRANSFER uses a language-based representation of a hand gesture, which captures a temporal combination of concepts such as handshape, location, and movement that are semantically related to the meaning of a word. By utilizing a pre-specified syntactic structure and tokenizer, TRANSFER segments a hand gesture into tokens and identifies individual components using a token recognizer. The tokenizer in this language-based recognition system abstracts the low-level technology-specific characteristics to the machine interface, enabling the design of a discriminator that learns technology-invariant features essential for recognition of gestures in both source and target technologies. We demonstrate the usage of TRANSFER for three different scenarios: a) transferring knowledge across technology by learning gesture models from video and recognizing gestures using WiFi, b) transferring knowledge from video to accelerometer, and d) transferring knowledge from accelerometer to WiFi signals

    Gesture Recognition in Robotic Surgery: a Review

    Get PDF
    OBJECTIVE: Surgical activity recognition is a fundamental step in computer-assisted interventions. This paper reviews the state-of-the-art in methods for automatic recognition of fine-grained gestures in robotic surgery focusing on recent data-driven approaches and outlines the open questions and future research directions. METHODS: An article search was performed on 5 bibliographic databases with combinations of the following search terms: robotic, robot-assisted, JIGSAWS, surgery, surgical, gesture, fine-grained, surgeme, action, trajectory, segmentation, recognition, parsing. Selected articles were classified based on the level of supervision required for training and divided into different groups representing major frameworks for time series analysis and data modelling. RESULTS: A total of 52 articles were reviewed. The research field is showing rapid expansion, with the majority of articles published in the last 4 years. Deep-learning-based temporal models with discriminative feature extraction and multi-modal data integration have demonstrated promising results on small surgical datasets. Currently, unsupervised methods perform significantly less well than the supervised approaches. CONCLUSION: The development of large and diverse open-source datasets of annotated demonstrations is essential for development and validation of robust solutions for surgical gesture recognition. While new strategies for discriminative feature extraction and knowledge transfer, or unsupervised and semi-supervised approaches, can mitigate the need for data and labels, they have not yet been demonstrated to achieve comparable performance. Important future research directions include detection and forecast of gesture-specific errors and anomalies. SIGNIFICANCE: This paper is a comprehensive and structured analysis of surgical gesture recognition methods aiming to summarize the status of this rapidly evolving field
    • …
    corecore