4 research outputs found

    Learning When to Switch: Composing Controllers to Traverse a Sequence of Terrain Artifacts

    Full text link
    Legged robots often use separate control policiesthat are highly engineered for traversing difficult terrain suchas stairs, gaps, and steps, where switching between policies isonly possible when the robot is in a region that is commonto adjacent controllers. Deep Reinforcement Learning (DRL)is a promising alternative to hand-crafted control design,though typically requires the full set of test conditions to beknown before training. DRL policies can result in complex(often unrealistic) behaviours that have few or no overlappingregions between adjacent policies, making it difficult to switchbehaviours. In this work we develop multiple DRL policieswith Curriculum Learning (CL), each that can traverse asingle respective terrain condition, while ensuring an overlapbetween policies. We then train a network for each destinationpolicy that estimates the likelihood of successfully switchingfrom any other policy. We evaluate our switching methodon a previously unseen combination of terrain artifacts andshow that it performs better than heuristic methods. Whileour method is trained on individual terrain types, it performscomparably to a Deep Q Network trained on the full set ofterrain conditions. This approach allows the development ofseparate policies in constrained conditions with embedded priorknowledge about each behaviour, that is scalable to any numberof behaviours, and prepares DRL methods for applications inthe real worl

    Learning Control Policies for Fall Prevention and Safety in Bipedal Locomotion

    Get PDF
    The ability to recover from an unexpected external perturbation is a fundamental motor skill in bipedal locomotion. An effective response includes the ability to not just recover balance and maintain stability but also to fall in a safe manner when balance recovery is physically infeasible. For robots associated with bipedal locomotion, such as humanoid robots and assistive robotic devices that aid humans in walking, designing controllers which can provide this stability and safety can prevent damage to robots or prevent injury related medical costs. This is a challenging task because it involves generating highly dynamic motion for a high-dimensional, non-linear and under-actuated system with contacts. Despite prior advancements in using model-based and optimization methods, challenges such as requirement of extensive domain knowledge, relatively large computational time and limited robustness to changes in dynamics still make this an open problem. In this thesis, to address these issues we develop learning-based algorithms capable of synthesizing push recovery control policies for two different kinds of robots : Humanoid robots and assistive robotic devices that assist in bipedal locomotion. Our work can be branched into two closely related directions : 1) Learning safe falling and fall prevention strategies for humanoid robots and 2) Learning fall prevention strategies for humans using a robotic assistive devices. To achieve this, we introduce a set of Deep Reinforcement Learning (DRL) algorithms to learn control policies that improve safety while using these robots. To enable efficient learning, we present techniques to incorporate abstract dynamical models, curriculum learning and a novel method of building a graph of policies into the learning framework. We also propose an approach to create virtual human walking agents which exhibit similar gait characteristics to real-world human subjects, using which, we learn an assistive device controller to help virtual human return to steady state walking after an external push is applied. Finally, we extend our work on assistive devices and address the challenge of transferring a push-recovery policy to different individuals. As walking and recovery characteristics differ significantly between individuals, exoskeleton policies have to be fine-tuned for each person which is a tedious, time consuming and potentially unsafe process. We propose to solve this by posing it as a transfer learning problem, where a policy trained for one individual can adapt to another without fine tuning.Ph.D

    Domain of Attraction Expansion for Physics-Based Character Control

    No full text
    © ACM, YYYY. This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The definitive version was published in ACM Transactions on Graphics, {VOL#, ISS#, (DATE)} http://doi.acm.org/10.1145/nnnnnn.nnnnnnDetermining effective control strategies and solutions for high degree-of-freedom humanoid characters has been a difficult, ongoing problem. A controller is only valid for a certain set of states of the character, known as the domain of attraction (DOA). This paper shows how states that are initially outside the DOA can be brought inside it. Our first contribution is to show how DOA expansion can be performed for a high-dimensional simulated character. Our second contribution is to present an algorithm that efficiently increases the DOA using random trees that provide denser coverage than the trees produced by typical sampling-based motion planning algorithms. The trees are constructed offline, but can be queried fast enough for near real-time control. We show the effect of DOA expansion on getting up, crouch-to- stand, jumping, and standing-twist controllers. We also show how DOA expansion can be used to connect controllers together
    corecore