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SUMMARY

The ability to recover from an unexpected external perturbation is a fundamental motor

skill in bipedal locomotion. An effective response includes the ability to not just recover

balance and maintain stability but also to fall in a safe manner when balance recovery

is physically infeasible. For robots associated with bipedal locomotion, such as humanoid

robots and assistive robotic devices that aid humans in walking, designing controllers which

can provide this stability and safety can prevent damage to robots or prevent injury related

medical costs. This is a challenging task because it involves generating highly dynamic

motion for a high-dimensional, non-linear and under-actuated system with contacts. De-

spite prior advancements in using model-based and optimization methods, challenges such

as requirement of extensive domain knowledge, relatively large computational time and

limited robustness to changes in dynamics still make this an open problem.

In this thesis, to address these issues we develop learning-based algorithms capable of

synthesizing push recovery control policies for two different kinds of robots : Humanoid

robots and assistive robotic devices that assist in bipedal locomotion. Our work can be

branched into two closely related directions : 1) Learning safe falling and fall prevention

strategies for humanoid robots and 2) Learning fall prevention strategies for humans us-

ing a robotic assistive devices. To achieve this, we introduce a set of Deep Reinforcement

Learning (DRL) algorithms to learn control policies that improve safety while using these

robots. To enable efficient learning, we present techniques to incorporate abstract dynami-

cal models, curriculum learning and a novel method of building a graph of policies into the

learning framework. We also propose an approach to create virtual human walking agents

which exhibit similar gait characteristics to real-world human subjects, using which, we

learn an assistive device controller to help virtual human return to steady state walking af-

ter an external push is applied. Finally, we extend our work on assistive devices and address

the challenge of transferring a push-recovery policy to different individuals. As walking

xiii



and recovery characteristics differ significantly between individuals, exoskeleton policies

have to be fine-tuned for each person which is a tedious, time consuming and potentially

unsafe process. We propose to solve this by posing it as a transfer learning problem, where

a policy trained for one individual can adapt to another without fine tuning.

xiv



CHAPTER 1

INTRODUCTION

We often find ourselves startled by unexpected incidents like a push, slip or a trip while

walking, yet we can successfully recover from these without having to put much thought

into our actions. This ability to generate a recovery motion from external perturbations is

one of the most important motor skills humans learn to prevent fall related injuries, these

could be motion that either prevents a fall or enables us to fall in a safe manner. Studies

have shown that we develop these abilities from a very young age, as infants transition from

crawling into walking, an important step towards walking efficiently [1] is to learn how to

fall. The quick reflexes and balance we develop over time help us avoid harmful injuries

that can be sustained during a fall.

Understanding the neuro-muscular control strategies that humans employ to achieve

these exemplary motor skills has been a long standing quest in the fields of computer graph-

ics, bio-mechanics and robotics. For bipedal robots, providing these abilities will be a step

closer towards ensuring safety during operation. A safety layer in the control framework

could open doors for these robots to work in unstructured outdoor environments or perhaps

even enable learning more challenging dynamic locomotion skills like gymnastics or yoga.

This would fulfill some of the initial motivations for designing bipedal robots such as be-

ing deployed in a disaster management scenario [2] or perform labor intensive work such

as delivery [3]. From a healthcare stand point, a deeper understanding of human motion

can have lasting benefits for society. For example, methods used for helping disabled or

injured people with gait rehabilitation can be vastly improved. In addition, better assistive

devices can be designed for locomotion leading to improved the quality of life for many

frail individuals.

Planning an effective response for a bipedal system is a challenging task because it
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requires generating highly dynamic motion for a high-dimensional system with unstable,

nonlinear and discontinuous dynamics due to contacts. To alleviate some of these issues

researchers have drawn inspiration from human strategies to design control algorithms.

Prior work in this area are typically built on model-based and optimization techniques [4,

5, 6, 7] which require significant domain knowledge, large computational time and have

limited robustness to changes in dynamics leaving plenty of opportunities for improvement.

In this dissertation, we focus on developing learning based methods to teach robots safe

locomotion skills. More specifically, we aim to teach effective push recovery response for

two different kinds of robots 1) Humanoid robots and 2) Assistive robotic devices that aid

in human walking. Our work with these two kinds of robots is along two closely related

directions: 1) Learning safe falling and fall prevention strategies for bipedal robots and 2)

Learning fall prevention strategies for humans using robotic assistive devices.

As bipedal robots are increasingly being tested in unstructured real-world environment

rather than in a laboratory setting, it is paramount that they have similar human-like ability

of safe locomotion to prevent damages to the robot or to its immediate surroundings. In

the first few chapters of this thesis we focus on developing a set of reinforcement learning

based algorithms that enables bipedal robots learn these skills efficiently. While healthy

adults have remarkable motor skills, people with disability or older adults have a reduced

ability to prevent falls. According the Center for Disease Control (CDC) [8], over 3 million

older adults are treated for fall related injuries resulting in millions of dollars in medical

bills [9]. One in five falls result in head injury [10, 11] which makes falls the leading cause

of traumatic brain injuries [12] among geriatric patients. In latter chapters of this thesis, we

shift our focus towards investigating the effectiveness of reinforcement learning methods

in learning control policies for assistive devices such as hip exoskeleton to prevent falls.
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1.1 Thesis overview

This dissertation is organized as follows - In chapter 2 we provide a comprehensive overview

of the most relevant prior work in designing control policies for humanoid robots and assis-

tive devices. We highlight some prior reinforcement learning and transfer learning methods

we draw inspiration from. Next, we present our work on designing safe falling and fall pre-

vention control policies for bipedal robots in Chapter 3. We then describe our approach

to design assistive device control policies for fall prevention in humans (Chapter 4). In

Chapter 5, we present a novel method to enable transfer of policies from one human agent

to another in a zero-shot manner. Finally, we conclude by summarizing our contributions

and providing some exciting future directions this work can be extended to.

For bipedal robots, In our first work [13] we addressed the challenge of optimizing a

safe falling motion for a humanoid robot. Falling in a safe manner involves minimizing

the impulse when a body part makes contact with a surface. Ideally, if a robot could turn

itself into a ball during a fall, the resulting rolling motion would produce minimal im-

pulse, similar to how gymnasts or martial artists fall when they lose balance. Since this has

physical constraints for a robot we solve for two quantities, planning the next contacting

body location as well as the corresponding joint motion to minimize the impulse of contact.

We designed an actor-critic DRL algorithm that learns n actors and critics simultaneously,

where each critic corresponds to selecting the next contact location while the correspond-

ing actor provides the necessary continuous joint motion in order to fall safely. We showed

that using our approach we are able to solve for falling motion that generated lesser impulse

on contact compared to prior approaches [5] while significantly speeding up the required

computational time. In our next work [14], we developed a curriculum learning method

to learn control policies for humanoid push recovery and balancing. Often solving a chal-

lenging task for high-dimensional robot requires a curriculum to enable efficient learning.

During training, we maintain as estimate of the current push-magnitude the policy is ca-

3



pable of handling and provide pushes around those magnitudes. We showed that a policy

learned using our approach outperforms other DRL baselines by handling larger push mag-

nitudes. In [15], we introduce a novel framework to simplify learning complex tasks, such

as 2D and 3D walking without falling, by building a directed graph of local control poli-

cies which automatically decomposes a complex task into sub-tasks. Using this approach,

we show that control policies perform better while consuming lesser samples compared to

naive DRL baselines.

For assistive devices, we introduce an algorithm in [16] to learn a hip exoskeleton policy

that helps a virtual human return to steady state walking after an external push is applied. To

achieve this, we first model steady state human walking in simulation using DRL and open

source bio-mechanical motion capture data. We demonstrate that the virtual human exhibits

similar dynamical behaviour to real humans by comparing joint kinematics, kinetics [17]

and foot-step lengths to real world data. Next, we learn a recovery policy for exoskeleton

to help the virtual human overcome external pushes applied to the hip. A thorough analysis

is presented on the efficacy of the exoskeleton policy to help recovery and we also showed

that our method can provide insights into the sensory and actuation capability required by

exoskeletons to perform optimally.

In our final work, we design an algorithm to address the issue of transferring the learned

exoskeleton policy to different individuals. As walking gait characteristics differ signifi-

cantly between individuals, exoskeleton policies have to be designed for each person. This

process can be tedious and time consuming, we propose to solve this by posing it as a

transfer learning problem. More specifically, we extend our prior work [16] and take the

following steps 1) Train multiple virtual human walking agents , each of them varying in

physical characteristics like height, mass, etc. as well as ability to recover. 2) Learn an

error function that predicts the difference in dynamics between them and 3) Train a policy

which is explicitly aware of the difference enabling adaptation and efficient transfer.
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CHAPTER 2

RELATED WORK

In this chapter, we give an overview of the most relevant prior work. Our contributions

can be broadly categorised into two topics - First, algorithms to teach safe falling and bal-

ance recovery for humanoid robots and second, fall prevention using assistive devices for

humans. In the first section, we highlight prior work done at the intersection of human

inspired control strategies for bipedal robots and reinforcement learning. Often, reinforce-

ment learning suffers from the requirement of a large sample budget, we also present a

summary of earlier work that addressed this shortcoming. Then, we provide an overview

of common approaches to design control algorithms for assistive devices such as exoskele-

tons for humans. Finally, we outline prior work which focused on developing algorithms

that enable transfer of control policies for robots from training to testing domains.

2.1 Control of bipedal robots

Researchers in the field of robotics, computer graphics and bio-mechanics have worked

on designing control policies for bipedal robots for a long time. Due to the inherent in-

stability of bipedal locomotion, falling and loss of balance are a common occurrence for

these robots, naturally, researchers have spent extensive efforts on developing methods to

maintain stability or fall safely to prevent damage. Due to the challenging nature of de-

signing these controllers, a common approach that has worked well is to draw inspiration

from human strategies by first understanding human motion and then developing control

algorithms that replicate the desired behaviour. There is a vast body of research in this area

ranging from deriving linear controllers from simple inverted pendulum dynamical models

to more complex model predictive controllers. We highlight some relevant ones in this

section.
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2.1.1 Balance recovery strategies

As a response to external perturbations, humans employ multiple strategies to maintain

balance. For example when pushed, bio=mechanical studies on postural balance control

have shown that we regain balance by controlling the center of pressure on the foot using

torques generated at the ankle and hip [18, 19, 20]. Inspired by such strategies, [4, 21,

22, 23] have derived control algorithms that are built strategies seen in humans. For larger

perturbations, controllers that combine ankle, hip and foot-placement strategies have been

proven successful in the humanoid robot community [24, 25, 26, 27, 28]. Many of these

controllers rely on simplified dynamical models, such as Linear Inverted Pendulum (LIP)

or 3D LIP, to compute control signals. While simplified models are beneficial for computa-

tional efficiency, they come at the cost of accuracy and inability to adapt to novel situations.

Further, they also fail to capture arm motions that are sometimes crucial in maintaining bal-

ance. On the other hand, after the pioneering work of Mnih et al. [29] deep reinforcement

learning methods such as [30] and [31] have shown promising results in learning effective

control policies for high-dimensional systems. However, for challenging tasks, such as bal-

ance recovery, reinforcement learning methods can require a large sample budget to learn

the skill. Our work [14] aims to combine the best of both worlds by building on top of these

simplified models while leveraging the benefits of reinforcement learning to learn a control

policy for a humanoid robot to recover from an external push. To reduce the required sam-

ple budget, we present a curriculum approach that simplifies learning process by providing

external pushes of adequate difficulty during training.

2.1.2 Safe falling

Recovery from an unstable state is important, but sometimes it is inevitable to prevent a

fall, in such situations a controller which plans a safe falling motion is necessary to prevent

damage to the robot and potentially to the surrounding environment as well. A plethora of

motion planning and optimal control algorithms have been proposed to reduce the damage
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of humanoid falls. These algorithms have also been largely inspired by human strategies,

for example rolling as one falls is an effective strategy. One direct approach to generating

falling motion is to use knee and torso flexion to generate a squatting motion and backward

to minimize impulse upon contact with the ground [32, 33, 34, 35, 36], this strategy works

best when the robot is falling backwards. Another heuristic based approach is to design a

few falling motion sequences for a set of expected scenarios. When a fall is detected, the

sequence designed for the most similar falling scenario is executed [37, 38]. This approach,

albeit simple, can be a practical solution in an environment in which the types of falls

can be well anticipated. To handle more dynamic environments, a number of researchers

cast the falling problem to an optimization which minimizes the damage of the fall. To

accelerate the computation, various simplified models have been proposed to approximate

falling motions, such as an inverted pendulum [39, 40], a planar robot in the sagittal plane

[41], a tripod [42], and a sequence of inverted pendulums [5]. In spite of the effort to reduce

the computation, most of the optimization-based techniques are still too slow for real-time

applications, with the exception of the work done by [6], who proposed to compute the

optimal stepping location to change the falling direction. In contrast, our work takes the

approach of policy learning using deep reinforcement learning techniques. Once trained,

the policy is capable of handling various situations with real-time computation.

Our work is also built upon recent advancement in deep reinforcement learning (DRL).

Although the network architecture used in this work is not necessarily ”deep”, we borrow

many key ideas from the DRL literature to enable training a large network with 278976

variables. The ideas of ”experience replay” and ”target network” from Mnih et al. [43]

are crucial to the efficiency and stability of our learning process, despite that the original

work (DQN) is designed for learning Atari video games from pixels with the assumption

that the action space is discrete. Lilicrap et al. [44] later combined the ideas of DQN and

the deterministic policy gradient (DPG) [45] to learn actor-critic networks for continuous

action space and demonstrated that end-to-end (vision perception to actuation) policies for

7



dynamic tasks can be efficiently trained.

The approach of actor-critic learning has been around for many decades [46]. The main

idea is to simultaneously learn the state-action value function (the Q-function) and the pol-

icy function, such that the intractable optimization of the Q-function over continuous action

space can be avoided. van Hasselt and Wiering introduced CACLA [47, 48] that represents

an actor-critic approach using neural networks. Our work adopts the update scheme for

the value function and the policy networks proposed in CACLA. Comparing to the recent

work using actor-critic networks [44, 49], the main difference of CACLA (and our work as

well) lies in the update scheme for the actor networks. That is, CACLA updates the actor

by matching the action samples while other methods follow the gradients of the accumu-

lated reward function. Our work is mostly related to the MACE algorithm introduced by

Peng et al. [50]. We adopt their network architecture and the learning algorithm but for a

different purpose: instead of using multiple actor-critic pairs to switch between experts, we

exploit this architecture to solve an MDP with a mixture of discrete and continuous action

variables.

2.1.3 Overview of methods which address sample efficiency in reinforcement learning

Recently, many successful model-free reinforcement learning (RL) algorithms have been

developed which show remarkable promise in learning challenging motor skills [43, 51,

31, 52, 30, 45, 47, 49]. However, one of the biggest shortcomings of these methods is

requirement of a large sample budget. Additionally, policies trained using RL are typically

effective only from a small set of initial states defined during training. To address these

issues, one approach researchers have taken is to cast a large-scale task as a hierarchical

reinforcement learning algorithm. This approach decomposes problems using temporal

abstraction which views sub-policies as macro actions, or state abstraction which focuses

on certain aspects of state variables relevant to the task. Prior work [53, 54, 55, 56, 57] that

utilizes temporal abstraction applies the idea of parameterized goals and pseudo-rewards
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to train macro actions, as well as training a meta-controller to produce macro actions. One

notable work that utilizes state abstraction is MAXQ value function decomposition which

decomposes a large-scale MDP into a hierarchy of smaller MDP’s [58, 59, 60]. MAXQ

enables individual MDP’s to only focus on a subset of state space, leading to better per-

forming policies. Our relay networks can be viewed as a simple case of MAXQ in which

the recursive subtasks, once invoked, will directly take the agent to the goal state of the

original MDP. That is, in the case of relay networks, the Completion Function that com-

putes the cumulative reward after the subtask is finished always returns zero. As such, our

method avoids the need to represent or approximate the Completion Function, leading to

an easier RL problem for continuous state and action spaces.

Yet another approach is to use a set of policies chained together to solve a challenging

task. Tedrake [61] proposed the LQR-Tree algorithm that combines locally valid linear

quadratic regulator (LQR) controllers into a nonlinear feedback policy to cover a wider

region of stability. Borno et al. [62] further improved the sampling efficiency of RRT trees

[61] by expanding the trees with progressively larger subsets of initial states. However, the

success metric for the controllers is based on Euclidean distance in the state space, which

can be inaccurate for high dimensional control problems with discontinuous dynamics.

Konidaris et al. [63] proposed to train a chain of controllers with different initial state

distributions. The rollouts terminate when they are sufficiently close to the initial states

of the parent controller. They discovered an initiation set using a sampling method in a

low dimensional state space. In contrast, our algorithm utilizes the value function of the

parent controller to modify the reward function and define the terminal condition for policy

training. There also exists a large body of work on scheduling existing controllers, such as

controllers designed for taking simple steps [64] or tracking short trajectories [65]. Inspired

by the prior art, our work demonstrates that the idea of sequencing a set of local controllers

can be Manipulating the initial state distribution during training has been considered a

promising approach to accelerate the learning process. [66] studied theoretical foundation
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of using “exploratory” restart distribution for improving the policy training. Recently, [67]

demonstrated that the learning can be accelerated by taking the initial states from successful

trajectories. [68] proposed a reverse curriculum learning algorithm for training a policy to

reach a goal using a sequence of initial state distributions increasingly further away from the

goal. We also train a policy with reversely-ordered initial states, but we exploited chaining

mechanism of multiple controllers rather than training a single policy.realized by learning

policies represented by the neural networks.

2.2 Control of assistive devices

2.2.1 Simulation of human motion

To study human motion during walking and recovery, biomechanics researchers often adopt

an experimental approach. First, data is collected in the real-world, then control policies

are synthesized using the real-world data. Winters et al [17] was among the first in the

field to study human gait, and the data published in this work remains relevant to this day.

Wang et al [69] and Hof et al [70] performed perturbation experiments and identified im-

portant relationships between COM velocity, step-lengths, center of pressure, stepping vs

ankle strategy, etc.. We aim to leverage the finding of this research to validate some of

the results. In Joshi et al [71], a balance recovery controller was derived using the results

reported in [69], however, they use a 3D Linear Inverted pendulum model to approximate

the human dynamics. A 3D LIPD does not capture the dynamics fully, for example, an-

gular momentum about the center of mass. Most relevant to our work, Antoine et al [72],

used a direct-collocation trajectory optimization to synthesize a walking controller for a 3D

musculo-skeletal model in OpenSim (OpenSim gait2392 model). The gait generated by the

controller closely matched experimental data. The proposed method, relies on understand-

ing the basic principles that lead to walking, such as minimizing metabolic cost, muscle

activations,etc. However, the proposed solution enforces left-right symmetry, which works

for walking, but is not ideal for disturbance recovery. Hence its unclear how well this
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approach will perform when there is an external disturbance to the human.

2.2.2 Design of control algorithms

Many researchers have developed control algorithms for robotic assistive walking devices.

However, majority of the work can be classified into tracking controllers [73, 74, 75] and

model-based controllers [76, 77, 78]. There has been limited work at the intersection of

DRL and control of assistive devices, especially for push recovery. Hamaya et al [79] pre-

sented model-based reinforcement learning algorithm to train a policy for a handheld device

that takes muscular effort measured by electromyography signals (EMGs) as inputs. This

method requires collecting user interaction data on the real-world device to build a model

of the user’s EMG patterns. However, collecting a large amount of data for lower-limb

assistive devices is less practical due to the safety concerns. Another recent work, Bingjing

et al [80], developed an adaptive-admittance model-based control algorithm for a hip-knee

assistive device, the reinforcement learning aspect of this work focused on learning param-

eters of the admittance model. Our method [81] is agnostic to the assistive walking devices

and can be used to augment any device that allows for feedback control.

2.2.3 Transfer of RL policies

A popular approach to transfer control policies is Domain randomization (DR). DR meth-

ods [82, 83, 84, 85, 86] propose to train policies that are robust to variations in the parame-

ters that affect the system dynamics. Although some of these methods have been validated

in the real world [82, 85], DR often requires manual engineering of the range in which the

parameters are varied to make sure that the true system model lies within the range of vari-

ation. For a complex robotic system, it is often challenging to estimate the correct range of

all the parameters because a large range of variation could lead to lower task performance,

whereas a smaller range leads to less robust policies. To address the demanding sample

budget issue with domain randomization, [87] presented a data-efficient domain random-
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ization algorithm based on bayesian optimization. The algorithm presented in Mehta et al

[88] actively adapts the randomization range of variation to alleviate the need for exhaus-

tive manual engineering. Ramos et al [89] proposed an approach to infer the distribution of

the dynamical parameters and showed that policies trained with randomization within this

distribution can transfer better.

Careful identification of parameters using data from the real world, popularly known

as system identification, has also shown promising results in real-world robots. Tan et al

[90] and Hwangbo et al [91] carefully identified the actuator dynamics to bring the source

environment closer to the target, Xie et al [92] also demonstrated that careful system iden-

tification techniques can transfer biped locomotion policies from simulation to real-world.

Jegorova et al [93] presented a technique that improves on existing system identification

techniques by borrowing ideas from generative adversarial networks (GAN) and showed

improved ability to identify the parameters of a system. Similarly, Jiang et al [94] pre-

sented a SimGAN algorithm that identifies a hybrid physics simulator to match the simu-

lated trajectories to the ones from the target domain to enable policy adaptation. Yu et al

[95] developed a method that combines online system identification and universal policy to

enable identifying dynamical parameters in an online fashion. Citing the difficulty in ob-

taining meaningful data for system identification, [96] developed an algorithm that probes

the target environment to provide more information about the dynamics of the environment.

A few model based approaches have also been successful in transferring policies to a target

domain [97, 98, 99].

Another popular approach of transferring policies includes utilizing data from the target

domain to improve the policy. Chebotar et al [100] presented a method that interleaves

policy learning and system identification, however this requires deploying the policy in the

target domain every few iterations. This method would be impractical for a system that

interacts closely with a human because of safety concerns. Yu et al [101] and Peng et al

[102] presented latent space adaptation techniques where the policy is adapted in the target
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domain by searching for a latent space input to the policy that enables successful transfer.

Exarchos et al [103] also presented an algorithm that achieved policy transfer using only

kinematic domain randomization combined with policy adaptation in the target domain,

similar to [101].

Yu et al [104] proposed Meta Strategy Optimization, a meta-learning algorithm for

training policies with latent variables that can quickly adapt to new scenarios with a handful

of trials in the target environment. Among the methods that use data from the target domain

also include meta-learning approaches like Bhelkale et al [105], in which a model-based

meta-reinforcement learning algorithm was presented to account for changing dynamics

of an aerial vehicle carrying different payloads. In this approach, the parameters causing

the variations in the dynamics are inferred by deploying the policy in the target domain,

which in turn helps improve the policy’s performance. In Ignasi et al. [106], the idea

of model-agnostic meta-learning [107] was extended to modelling dynamics of a robot.

The authors presented an approach to quickly adapt the model of the robot in a new test

environment while using a sampling-based controller MPPI to compute the actions. [108]

developed a zero-shot transfer for policy by combining reinforcement learning and a robust

tracking controller with a disturbance observer in the target environment. The validated the

approach on a vehicle driving task. Similarly, [109, 110] presented an approach to combine

bayesian learning and adaptive control by learning model error and uncertainty.

For tasks such as assistive device control for human locomotion, it is potentially unsafe

and prohibitive to collect sufficient task-relevant data in the real world which prevents us

from using methods such as system identification or transfer learning approaches that need

data in the target environment. In addition to this, human dynamics exhibit large variations

due to many unobserved parameters, this makes it challenging to define the right parameters

for the system model in simulation and also in finding the right range of parameter variation

for an approach like DR.
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2.2.4 Adaptation for Assistive Devices

Assistive devices such as exoskeletons provide unique challenges for domain adaptation

due to the large variations between individuals who pilot the device. Zhang et al [111]

reported a human-in-the-loop optimization approach for ankle exoskeletons to account for

this variability, however, this approach takes a few hours per individual to find the optimal

control law. Jackson et al [112] presented a unique heuristic-based approach to design a

control law that adapts to the person’s muscle activity. While these methods work well for

steady-state walking, the large number of data required to optimize for in the case of [111]

and the complex muscle responses involved during push recovery make it an infeasible

application. Several recent works have incorporated a learning-based approach to tackling

the problem of adaptation, Peng et al [113] adopted a reinforcement learning approach to

learn assistive walking strategies for Hemiplegic patients, which was tested on real hu-

man patients and showed robustness and adaptability. However, it requires online data to

update the actor-critic network. This process involves deploying a policy on a patient to

collect data, for a task like push recovery it might be challenging to collect relevant data

required for updating the policy without compromising the patient’s safety. Both [114] and

[115] combined dynamic motion primitives (DMPs) and learning approaches to adapt con-

trol strategies for different individuals. Majority of the work with assistive devices have

primarily focused on walk assistance and not on push-recovery.
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CHAPTER 3

SAFE FALLING AND FALL PREVENTION OF BIPEDAL ROBOTS

3.1 Learning control policies for safe falling

3.1.1 Motivation

Figure 3.1: Abstract model of the humanoid used in policy training.

As research efforts to push bipedal robots out of a laboratory setting and into the real

world are increasing, the ability for robots to tackle unexpected situations in unstructured

environments becomes crucial. For bipedal robots, due to the inherently unstable nature

of dynamics, falling and losing balance are situations where being equipped with control

policies that can prevent damages to the robot are paramount for success in the real world.

Unlike walking , which is periodic in nature, falling is more challenging problem as it

involves reasoning about both discrete and continuous quantities.

Figure 3.2: Illustration of the method to compute control signal to execute a safe fall

First, the policy must decide which body part should make contact with the ground, the

location on the ground as well as the timing of the contact. The policy must also output the
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corresponding joint trajectory which minimizes impact upon contact. For example, humans

employ a very effective strategy of rolling in order to reduce impact. Prior methods reported

in generating walking motions which leverage the periodic nature of walking using finite-

state machines (FSM) [116, 117, 118, 119] can be challenging to apply to the task of falling.

Even approaches that mimic human motion using strong priors such as motion capture data

[120, 121, 122, 123] are not entirely suitable due to lack of motion capture data of a wide

variety of falls.

To this end, we developed a policy optimization approach [13] for minimizing the dam-

age to a humanoid robot during a fall. In our approach, we first decide n candidate con-

tacting body part such as hands, feet, or knees designed to be a contact point with the

ground. Our algorithm trains n control policies (actors) and the corresponding value func-

tions (critics) in a single interconnected neural network. Each policy and its corresponding

value function are associated with a candidate contacting body part. During policy execu-

tion, the network is queried every time the robot establishes a new contact with the ground,

allowing the robot to re-plan throughout the fall. Based on the current state of the robot,

the actor corresponding to the critic with the highest value will be executed while the asso-

ciated body part will be the next contact with the ground. With this mixture of actor-critic

architecture, the discrete contact sequence planning is solved through the selection of the

best critics while the continuous control problem is solved by the optimization of actors. To

simplify learning , the policy uses an abstract model representation of a humanoid robot,

shown in Figure 3.1, consisting of an inverted pendulum and a telescopic rod to plan ac-

tions which are then mapped back to a full joint space using inverse kinematics. Figure 3.2

illustrates the sequence of operations involved in planning a safe fall. We use CACLA pol-

icy learning algorithm [47, 48] to optimize the control policy. We show that our proposed

approach is able to generate motions that lead to less impact while falling down compared

to prior approaches [5] while also significantly speeding up the computational time ( 50 to

400 times faster).
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Figure 3.3: A schematic illustration of our deep neural network that consists of n actor-
critics. The numbers indicate the number of neurons in each layer.

3.1.2 Mixture of actor-critic experts

Figure 3.2 illustrates the workflow of the overall policy. We first define a function p :

X 7→ S which maps a state of robot (x ∈ X ) to a state of abstract model (s ∈ S). The

mapping can be easily done because the full set of joint position and velocity contains all

the necessary information to compute s. As the robot receives an external force initially,

the state of the robot is projected to S and fed into the abstract-level policy. The action (a)

computed by the abstract-level policy is passed into the joint-level policy to compute the

corresponding joint torques (τ ). If no new contact is detected after executing τ , the new

state of the robot will be fed back into the joint-level policy and a new τ will be computed

(the lower feedback loop in Figure Figure 3.2). If the robot encounters a new contact, we

re-evaluate the contact plan by querying the abstract-level policy again (the upper feedback

loop in Figure 3.2).

Abstract-level Policy

To overcome the challenge of optimizing over both discrete and continuous action vari-

ables, we introduce a new policy representation based on a neural network architecture

inspired by MACE [50]. The policy takes as input the state of the abstract model and

outputs the action, as well as the next contacting body part. The state space is defined as

s = {c1, r1, θ1, ṙ1, θ̇1}, where the total elapsed time t is removed from the state space pre-
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viously defined by Ha and Liu [5]. As a side benefit of a feedback policy, we no longer

need to keep track of the total elapsed time. For the action space, we remove the discrete

action variable, c2 so that the new action is a continuous vector in R3: a = {θ2,∆, ṙ
d
1}.

The network combines n pairs of actor-critic subnets, each of which is associated with a

contacting body part. Each actor, Πi(s) : R5 7→ R3, represents a control policy given that

the i-th contacting body part is chosen to be the next contact. Each critic, Vi(s) : R5 7→ R,

represents the value function that evaluates the return (long-term reward) of using the i-th

contacting body part as the next contact and taking the action computed by Πi(s) as the

next action. We fuse all n actor-critic pairs in one single network with a shared input layer

(Figure 3.3).

At each impact moment when a new contact is established, the network evaluates all

the Vi(s), 1 ≤ i ≤ n, and selects the policy corresponding to the highest critic. This

arrangement allows us to train n experts, each specializes to control the robot when a

particular contacting body part is selected to be the next contact. As a result, we cast

the discrete contact planning into the problem of expert selection, while simultaneously

optimizing the policy in continuous space.

Reward

Since our goal is to minimize the maximal impulse, we define the reward function as:

r(s, a) =
1

1 + j
, (3.1)

where j is the impulse induced by the contact. Suppose the COM of the pendulum and the

tip of the stopper are (x1, y1) and (x2, y2) respectively at the impact moment, the impulse

can be computed as:

j = − ẏ−2
1
M

+ 1
I
(x2 − x1)2

, (3.2)

where M is the mass and I is the inertia of the abstract model (see details in [5]).
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With this definition of the reward function, the objective of the optimization is to max-

imize the minimal reward during the fall.

Learning Algorithm

Algorithm 1 illustrates the process of learning the abstract-level policy. We represent the

policy using a neural network consisting n pairs of actor-critic subnets with a shared input

layer (Figure 3.3). Each critic has two hidden layers with 32 neurons each. The first hidden

layer is shared among all the critics. Each actor has 3 hidden layers with 128 neurons each.

All the hidden layers use tanh as the activation functions. We define weights and biases of

the network as θ, which is the unknown vector we attempt to learn.

The algorithm starts off with generating an initial set of high-reward experiences, each

of which is represented as a tuple: τ = (s, a, s′, r, c), where the parameters are the starting

state, action, next state, reward, and the next contacting body part. To ensure that these

tuples have high reward, we use the dynamic-programming-based algorithm described in

[5] (referred as DP thereafter) to simulate a large amount of rollouts from various initial

states and collect tuples. Filling the training buffer with these high-reward experiences

accelerates the learning process significantly. In addition, the high-reward tuples generated

by DP can guide the abstract-level policy to learn ”achievable actions” when executed on a

full body robot. Without the guidance of these tuples, the network might learn actions that

increase the return but unachievable under robot’s kinematic constraints.

In addition to the initial experiences, the learning algorithm continues to explore the

action space and collect new experiences during the course of learning. At each iteration,

we simulate K(= 10) rollouts starting at a random initial state sampled from a Gaussian

distribution N0 and terminating when the abstract model comes to a halt. A new tuple is

generated whenever the abstract model establishes a new contact with the ground. The

exploration is done by stochastically selecting the critic and adding noise in the chosen

actor. We follow the same Boltzmann exploration scheme as in [50] to select the actor
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Algorithm 1: Learning abstract-level policy
1: Randomly initialize θ
2: Initialize training buffer with tuples from DP
3: while not done do
4: EXPLORATION:
5: for k = 1 · · ·K do
6: s ∼ N0

7: while s.θ̇1 ≥ 0 do
8: c← Select actor stochastically using Equation Equation 3.3
9: a← Πc(s) +Nt

10: Apply a and simulate until next impact moment
11: s′ ← Current state of abstract model
12: r ← r(s, a)
13: Add tuple τ ← (s, a, s′, r, c) in training buffer
14: s← s′

15: end while
16: end for

17: UPDATE CRITIC:
18: Sample a minibatch m tuples {τi = (si, ai, s

′
i, ri, ci)}

19: yi← min(ri, γmaxj V̂j(s
′
i)) for each τi

20: θ ← θ + α
∑

i(yi − Vci(s))∇θVci(s)

21: UPDATE ACTOR:
22: Sample a minibatch m tuples {τi = (si, ai, s

′
i, ri, ci)}

23: yi = maxj Vj(s)

24: y′i ← min(ri, γmaxj V̂j(s
′
i))

25: if y′i > yi then
26: θ ← θ + α(∇θΠci(s))T (ai − Πci(s))
27: end if
28: end while
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Πi(s) based on the probability defined by the predicted output of the critics:

Pi(s) =
eVi(s|θ)/Tt∑
j e

Vj(s|θ)/Tt
, (3.3)

where Tt(= 5) is the temperature parameter, decreasing linearly to zero in the first 250

iterations. While the actor corresponding to the critic with the highest value is most likely

to be chosen, the learning algorithm occasionally explores other actor-critic pairs, essen-

tially trying other possible contacting body parts to be the next contact. Once an actor is

selected, we add a zero-mean Gaussian noise to the output of the actor. The covariance of

the Gaussian is a user-defined parameter.

After K rollouts are simulated and tuples are collected, the algorithm proceeds to up-

date the critics and actors. In critic update, a minibatch is first sampled from the training

buffer withm(= 32) tuples, τi = (si, ai, s
′
i, ri, ci). We use the temporal difference to update

the chosen critic similar to [43]:

yi = min(ri, γmaxj V̂j(s
′
i)) (3.4)

θ ← θ + α
∑

i(yi − Vci(s))∇θVci(s)

where θ is updated by following the negative gradient of the loss function
∑

i(yi−Vci(s))2

with the learning rate α(= 0.0001). The discount factor is set to γ = 0.9. Note that we also

adopt the idea of target network from [43] to compute the target, yi, for the critic update.

We denote the target networks as V̂ (s).

The actor update is based on supervised learning where the policy is optimized to best

match the experiences: minθ
∑

i ‖ai − Πci(si)‖2. We use the positive temporal difference
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Figure 3.4: The average reward for 10 test cases.

to decide whether matching a particular tuple is advantageous:

y = maxj Vj(si) (3.5)

y′ = min(ri, γmaxj V̂j(s
′
i))

if y′ > y, θ ← θ + α(∇θΠci(s))T (ai − Πci(s)).

3.1.3 Results

We validate our policy in both simulation and on physical hardware. The testing platform

is a small humanoid, BioloidGP [124] with a height of 34.6 cm, a weight of 1.6 kg, and

16 actuated degrees of freedom. We also compare the results from our policy against those

calculated by the dynamic-programming (DP) based method proposed by Ha and Liu [5].

Because DP conducts a full search in the action space online, which is 50 to 400 times

slower than our policy, in theory DP should produce better solutions than ours. Thus, the

goal of the comparison is to show that our policy produces comparable solutions as DP

while enjoying the speed gain by two orders of magnitude.

We implement and train the proposed network architecture using PyCaffe [125] on

Ubuntu Linux. For simulation, we use a Python binding [126] of an open source physics

engine, DART [127].
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Figure 3.5: The histogram of rewards for the 1000 test cases. Our policy outperforms DP
in 65% of the tests.

Learning of Abstract-Level Policy

In our experiment, we construct a network with 8 pairs of actor-critic to represent 8 possible

contacting body parts: right toe, right heel, left toe, left heel, knees, elbows, hands, and

head. During training, we first generate 5000 tuples from DP to initialize the training buffer.

The learning process takes 1000 iterations, approximately 4 hours on 6 cores of 3.3GHz

Intel i7 processor. Figure Figure 3.4 shows the average reward of 10 randomly selected

test cases over iterations. Once the policy is trained, a single query of the policy network

takes approximately 0.8 milliseconds followed by 25 milliseconds of the inverse kinematics

routine. The total of 25.8 milliseconds computation time is a drastic improvement from DP

which takes 1 to 10 seconds of computation time.

We compare the rewards of the trained policy with those of DP by running 1000 test

cases starting from randomly sampled initial states. The results are shown in Figure Fig-

ure 3.5, a histogram of rewards for the 1000 tests computed by our policy and by DP. Our

policy achieves not only comparable rewards, it actually outperforms DP in 64 % of the test

cases. The average reward of our policy is 0.8093, comparing to 0.7784 of DP. In terms of

impulse, the average of maximum impulse produced by our policy is 0.2540, which shows

a 15 % improvement from 0.2997 produced by DP.

Theoretically, DP, which searches the entire action space for the given initial state,

should be the upper bound of the reward our policy can ever achieve. In practice, the

discretization of the state and action spaces in DP might result in suboptimal plans. In
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Figure 3.6: Top: A fall from a two-feet stance due to a 3 N push (Two-feet). Middle: A
fall from an unbalanced stance due to a 5 N push (Unbalanced). Bottom: A fall from a
one-foot stance due to a 6 N push (One-foot).

Table 3.1: Different falling strategies.

Initial
Pose Push Algorithm Contact Sequence Maximum

Impulse
Unplanned Torso (0.90) 0.90

Two-feet 3 N DP Hands (0.58) 0.58

Ours Knees (0.53), Hands (0.20) 0.53

Unplanned Torso (2.50) 2.50

Unbalanced 5 N DP Hands (0.53) 0.53

Ours Hands (0.45) 0.45

Unplanned Torso (2.10) 2.10

One-foot 6 N DP L-Heel (0.20), Hands (0.45) 0.45

Ours L-Heel (0.10), Hands (0.43) 0.43

contrast, our policy exploits the mixture of actor and critic network to optimize continuous

action variables without discretization. The more precise continuous optimization often

results in more optimal contact location or timing. In some cases, it also results in different

contact sequences being selected (45 out of 641 test cases where our policy outperforms

DP).

Different falling strategies

With different initial conditions, various falling strategies emerge as the solution computed

by our policy. Table Table 3.1 showcases three distinctive falling strategies from the test
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Figure 3.7: Comparison of the impulse profiles among the unplanned motion, the motion
planned by DP, and the motion planned by our policy.

cases. The table shows the initial pose, the external push, the resulting contact sequence,

the impulse due to each contact (the number in the parenthesis), as well as the maximal

impulse for each test case. Starting with a two-feet stance, the robot uses knees and hands

to stop a fall. If the initial state is leaning forward and unbalanced, the robot directly uses

its hands to catch itself. If the robot starts with a one-foot stance, it is easer to use the swing

foot followed by the hands to stop a fall. The robot motion sequences can be visualized in

Figure 3.15 and the supplementary video. For each case, we compare our policy against DP

and a naive controller which simply tracks the initial pose (referred as Unplanned). Both

our policy and DP significantly reduce the maximum impulse comparing to Unplanned. In

the cases where our policy outperforms DP, the improvement can be achieved by different

contact timing (One-foot case), better target poses (Unbalanced case), or different contact

sequences (Two-feet case, Figure Figure 3.7).

Hardware Results

Finally, we compare the falling strategy generated by our policy against the unplanned

motion on the hardware of BioloidGP. Due to the lack of on-board sensing capability, Bi-
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Figure 3.8: Comparison of measured acceleration between motion computed by our policy
and unplanned motion. Three trials for each condition are plotted. Left: A fall from a
two-feet stance due to a 3 N push. Right: A fall from an one-foot stance due to a 5 N push.

oloidGP cannot take advantage of the feedback aspect of our policy. Nevertheless, we

can still use this platform to demonstrate the falling strategy generated by our policy and

compare it against an unplanned motion.

We first match the initial pose of the simulated BioloidGP with the real one and push the

simulated BioloidGP from the back by 3 N and 5 N, assuming that the pushes we applied to

the robot by hand are about the same. We then apply our policy on the simulated BioloidGP

to obtain a sequence of target poses. In the hardware experiment, we program BioloidGP

to track these poses once a fall is detected. During the falls, we measure the acceleration

of the head using an external IMU. Figure 3.8 shows the results of two different falls. In

the first case, the robot is pushed with a force of 3N and is initialized with both the feet

on the ground and an upright position, the robot uses its knees first and then the hands

to control the fall. The maximal acceleration from our policy is 2.9 G while that from an

unplanned motion is 5.7 G, showing a 49% of improvement. In the second case, the robot is

pushed with a force of 5N starting with one foot on the ground, the falling strategy for this

includes using the left-heel first then the hands to control the fall. The maximal acceleration

from our policy is 2.3 G while that from an unplanned motion is 6.4 G, showing a 64% of

improvement.
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3.1.4 Conclusions

We proposed a new policy optimization method to learn the appropriate actions for mini-

mizing the damage of a humanoid fall. Unlike most optimal control problems, the action

space of our problem consists of both discrete and continuous variables. To address this is-

sue, our algorithm trains n control policies (actors) and the corresponding value functions

(critics) in an actor-critic network. Each actor-critic pair is associated with a candidate

contacting body part. When the robot establishes a new contact with the ground, the policy

corresponding to the highest value function will be executed while the associated body part

will be the next contact. As a result of this mixture of actor-critic architecture, we cast the

discrete contact planning into the problem of expert selection, while optimizing the policy

in continuous space. We show that our algorithm reliably reduces the maximal impulse of

a variety of falls. Comparing to the previous work [5] that employs an expensive dynamic

programming method during online execution, our policy can reach better reward and only

takes 0.25% to 2% of computation time on average.

One limitation of this work is the assumption that humanoid falls primarily lie on the

sagittal plane. This limitation is due to our choice of the simplified model, which reduces

computation time but only models planar motions. This assumption can be easily chal-

lenged when considering real-world falling scenarios, such as those described in [42, 6].

One possible solution to handling more general falls is to employ a more complex model

similar to the inertia-loaded inverted pendulum proposed by [6]. Our algorithm also as-

sumes that the robot is capable of motion that is fast enough to achieve the pose that the

network outputs. Sensors to detect contacts are also important to use the trained policy as

a feedback controller.

Another possible future work direction is to learn control policies directly in the full-

body joint space, bypassing the need of an abstract model and the restrictions come with it.

This allows us to consider more detailed features of the robot during training, such as full

body dynamics or precise collision shapes. Given the increasingly more powerful policy

27



Figure 3.9: An Linear inverted pendulum abstract model used in computing control signals
for ankle and hip strategy

learning algorithms for deep reinforcement learning [31, 128], motor skill learning with a

large number of variables, as is the case with falling, becomes a feasible option.

3.2 Fall prevention for bipedal robots

3.2.1 Motivation

In the previous section, we described our approach to generate falling motion using policy

optimization method. However, in many situations a fall can be prevented by employing

some effecting balance strategies that humans use. Similar to falling, balancing strategies

are often not periodic in nature and require special control algorithms to achieve stability.

In Kumar et al. [14], we propose a curriculum learning framework to learn push re-

covery control policies for humanoid robots. Our algorithm aimed to improve existing

model-based balance controllers inspired by human balance recovery motion like hip and

ankle strategies [4, 21, 22] and stepping strategies [24, 25, 26, 27, 28]. Typically, model-

based control algorithms use an abstract dynamical model (like Linear-inverted pendulum

LIPM or the 3D version 3D-LIPM) for computational tractability, however lower dimen-

sional models fail to capture accurate dynamics of the system. Abstract models also neglect

arm motions which can be important for balancing. Model-free reinforcement learning, on

the other hand, has been shown to work well for high-dimensional systems at the cost of
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Figure 3.10: An abstract model to compute stepping distance when a large external push is
applied

sample efficiency during training. To take advantage of both these methods, our policy out-

puts residual control signals in addition to control computed by model-based controllers

thereby simplifying learning the control policy.

Figure 3.9 and Figure 3.10 illustrate the abstract dynamical models used by model-

based controllers to compute the control signal. The objective function to train the policy

minimizes Center-of-Mass position and velocity changes when reacting to pushes to en-

courage balancing. The training process also incorporates an adaptive sampling scheme

that identifies the magnitude of push that needs to be applied to enable efficient learning.

Our key insight here was based on observation that during training, applying pushes of

large magnitudes could be detrimental to learning where as pushes of low magnitudes do

not help the policy learn much. We maintain an estimate of the push magnitudes the policy

is currently capable of handling , called Region of Attraction illustrated in ??, and draw

perturbations near its boundary. We show that the policy trained using our approach is

capable of handling pushes of larger magnitudes compared to simple DRL baselines while

also being able to generate appropriate arm-motions to aid in balance recovery.

3.2.2 Adaptive sampling to simplify learning

The control policy takes as input a partial observation vector o = [CT , ĊT ,qT ]T , where

each term represents the COM position C, the COM velocity Ċ, and the joint positions
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q. The outputs are 12 control signals u = [∆τ Th ,∆τ
T
a ,∆qTs ]T where ∆τh and ∆τa are

offsets to the hip and ankle torques and ∆qs is the offset to the shoulder target angles. All

terms have four entries for the pitch and roll axes in the left and right limbs. The final

torques are computed as:

τ = PD(q̄ + Is∆q̄s,q, q̇) + Ih(τ̄h + ∆τh) + Ia(τ̄a + ∆τa) (3.6)

where q̄, τ̄h, τ̄a are outputs from the model-based controllers and Ih, Ia, Is matrices map

the hip, ankle, and shoulder joints to the full-body joint space. The PD controller PD

provides the joint torques to track the modified target position q̄ + Is∆q̄s for all joints

except hips and ankles.

Another important component of RL is the reward function. One of the possible reward

functions is a binary success flag that is 1 if and only if the COM height is greater than the

certain threshold z̄. However, training such a binary function is usually time-consuming

and impractical. Rather, we choose a simple continuous function that penalizes the COM

position and velocity as follows:

r(q, (q̇)) = −wp|C̄−C(q)|2 − wd|Ċ(q)|2 (3.7)

where the first term penalizes the positional error of the COM and the second term penalizes

the velocity. The terms wp and wd are the weights for adjusting the scales.

3.2.3 Adaptive Sampling of Perturbations

This section describes our scheme for adaptively sampling perturbations. In our implemen-

tation, perturbations are parameterized by the directions and magnitudes of external forces.

The objective of adaptive sampling is to expedite the learning process by providing more

informative trials. For instance, trying to recover from an extremely strong perturbation

will not be a useful data point because the robot will quickly fall even with the optimal
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Figure 3.11: Polygon representation of a RoA (red line) and the range of perturbations the
controller can handle (cyan area).

control policy. However, it is difficult to determine whether a randomly sampled perturba-

tion is too weak or too strong because it depends on the performance of the current policy.

Our key idea is to maintain the RoA information during the learning process and sam-

ple perturbations for training using a probabilistic distribution around the boundary of the

current RoA. This process requires us to implement the following three functionalities:

• Representing the RoA,

• Sampling perturbations from the given RoA, and

• Updating the RoA.

More precisely, we define the RoA R as the range of perturbations for which the con-

troller shows success rates of above 90 %. A trial is declared success if the COM height Cz

at the end of the simulation is greater than a user-defined threshold z̄.

We represent the RoA as a polygon with M sides where the vertices are defined in

the polar coordinate by a set of magnitudes R = {Ω1,Ω2, · · · ,ΩM} at predefined angles

{θ1, θ2, · · · , θM} chosen to uniformly cover 0 to 2π radians (Figure Figure 3.11). The

assumption underlying this representation is that a controller that works for a particular
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Figure 3.12: The function fα that maps the success rate to the update rate α.

perturbation is likely to recover from a weaker perturbation in the same direction. Although

there may be counterexamples, this assumption allows us to use a simplified representation

that works in practice. In some cases, it is more convenient to represent the magnitude as a

function of the angle, i.e. Ω = fR(θ).

The adaptive sampling method is summarized in Algorithm algorithm 2. For each

episode of learning, we first randomly sample θ ∈ {θ1, θ2, · · · , θM}, and then sample Ω ∈

[klfR(θ), kufR(θ)] where kl ≤ 1 and 1 ≤ ku are predefined constants. An example of RoA

representation and the range of permissible perturbations is shown in Figure Figure 3.11.

During the training process, we updateR for everyK iterations using a simple feedback

rule based on the success rates at recent episodes. At the beginning, we initialize R with a

constant magnitude Ω̃ in all directions, i.e. R =
{

Ω̃, · · · , Ω̃
}

. We collect the success rates

in each direction by counting the number of good and bad trials ngoodi and nbadi where i is

the index of the direction closest to the direction of the sampled perturbation. At every K

iterations, we increase ωi if the success rate ngoodi /(ngoodi + nbadi ) is greater than 0.9, and

shrink it otherwise. The update rate α is defined by a function fα of the success rate shown

in Figure Figure 3.12.
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Algorithm 2: Learning with Adaptive Sampling

1 InitializeR with a constant Ω̃;
2 Initialize ngood1 , nbad1 , · · · , ngoodM , nbadM to 0;
3 Initialize the policy Φ;
4 for each iteration do
5 for each trial do
6 θ = random(0, 2π);
7 Ω = random(klfR(θ), kufR(θ));
8 run a simulation with perturbation θ, Ω;
9 i = index of direction closest to θ;

10 if Cz > z̄ then
11 ngoodi +=1;

12 else
13 nbadi +=1;

14 update the policy Φ;
15 if every K-th iteration then
16 for each direction i do
17 αi = fα(ngoodi /(ngoodi + nbadi ));
18 Ωi = αiΩi;

19 set ngood1 , nbad1 , · · · , ngoodM , nbadM to 0;

20 return trained policy Φ;

Table 3.2: Problem and Learning Parameters

Category Name Postural
Controller

Stepping
Controller

Problem

Perturbation Magnitudes (1.0, 51.0) (41.0, 81.0)
Perturbation Angles (−π, π) (−π/4, π/4)

Position Weight (wp) 1.0 1.0
Velocity Weight (wd) 0.1 0.5

TRPO

Neural Network Structure 32, 32 32, 32, 32
Activation Functions tanh tanh

Initial Standard Deviation 0.3 0.3
Batch Size 50000 50000

Max Iteration 1200 1200
Step Size 0.01 0.01

Adaptive Sampling

# of Sides (M ) 8 3

Initial Magnitude (Ω̃) 5.00 41.0
Update Frequency (K) 4 4

Sampling Range Low (kl) 0.8 0.7
Sampling Range High (kl) 1.1 1.1
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3.2.4 Results

We use the simulation model of the humanoid robot COMAN [129] to conduct our exper-

iments. The humanoid robot model is about 0.9 meters tall and 31 kg in weight. It has

23 joints (7 in each leg, 4 in each arm, and 3 in the torso) and 31 DoFs including the six

underactuated DoFs of the floating base, although we do not use the elbow joints in our

controller. The maximum torque of each joint is set to 35 Nm, which is 70 % of the speci-

fication sheet values. The proportional and derivative gains for the PD controller are set to

100.0 Nm/rad and 1.0 Nms/rad respectively.

The simulations are conducted with an open-source physics simulation engine Py-

DART [130]. It handles contacts and collisions by formulating velocity-based linear-

complementarity problems to guarantee non-penetration and approximated Coulomb fric-

tion cone conditions. The simulation and control time steps are set to 0.002 s (500 Hz),

which is enough to be executed on the actual COMAN hardware. The computations are

conducted on a single core of 3.40GHz Intel i7 processor.

For all cases, perturbations are applied to the torso of the robot for 0.2 seconds. The

perturbation direction is defined as the direction of the external force. For instance, a

backward perturbation (180◦) is a push from the front direction that causes the robot to fall

backward.

We use the TRPO [131] implementation of Duan et al. [132] to train the control policy

whose structures and activation functions are listed in Table Table 3.2. Learning of each

control policy takes 12 hours in average. Also refer to Table Table 3.2 for other hyper-

parameters for problems and algorithms.

In the following sections, we will compare the following three learning methods:

• Naive RL

• RL with a model-based controller and uniform sampling

• RL with a model-based controller and adaptive sampling
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Table 3.3: Comparison of Various LQR Parameters

State
Weight (Q)

Control
Weight (R)

Maximum
Backward
Perturb.

Maximum
Forward
Perturb.

diag(100, 100, 1, 1) diag(0.005, 0.005) −11 N 11 N
diag(200, 200, 2, 2) diag(0.005, 0.005) −16 N 26 N

diag(1000, 1000, 10, 10) diag(0.005, 0.005) −21 N 46 N
diag(2000, 2000, 20, 20) diag(0.005, 0.005) −16 N 41 N

Figure 3.13: The learning curves for postural balance controllers. Note that the learning
curve with adaptive sampling (blue) is measured from a different set of perturbations.

The baseline controller for naive RL is tracking with local PD position servos at each joint

to maintain a given target pose q̄. Uniform sampling draws the perturbations from all

possible ranges defined in Table Table 3.2.

3.2.5 Postural Balance Controller

First, we apply the proposed learning framework to the postural balance controller.

We select the LQR parameters by comparing various feedback matrices K from differ-

ent state and input weights Q and R (Table Table 3.3). Based on the maximum permissible

perturbation, we set Q to diag(1000, 1000, 10, 10) and R to diag(0.005, 0.005) that yields

the following feedback gain:

K =

−448 −1.30 −45.2 −0.14

−1.30 447 −0.13 47.3

 . (3.8)

First, we compare the learning curves of RL and RL with the LQR controller (Fig-

ure Figure 3.13). Within the same iterations, learning with the LQR achieves a reward of
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Figure 3.14: RoAs for postural balance controllers.

Figure 3.15: The learned motions with adaptive sampling. Top: Postural balancing with
the 26.0 N backward perturbation. Bottom: Stepping with the 81.0 N forward perturbation.

−39.5 while naive RL achieves −64.8. Therefore, it is not surprising that the controller

with the LQR has a larger RoA than that of RL, especially for forward perturbations that

the LQR controller itself is already able to handle well (Figure Figure 3.14).

Although learning with the LQR controller is successful, the resulting RoA is not as

expanded as we expected. For example, the final controller becomes more vulnerable to

backward pushes than the initial controller, even though the total area of the RoA has been

increased. We suspect that the final controller tends to bend forward to increase the RoA in

all other directions while sacrificing the ability to recover from backward perturbations.

By training with adaptive sampling, we are able to achieve a larger RoA than with

uniform sampling. The most improved directions of perturbations are backward (180◦)
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and left (90◦), where the controller can recover from 50 % and 38 % larger perturbations

than other controllers, respectively. When we take a look at the motions, we observe more

proper arm reactions that are important to recover from side pushes.

Note that the learning curve of the adaptive sampling method cannot be compared di-

rectly to those of uniform sampling methods because the sample perturbations are drawn

from different distributions. For example, the initial average reward for adaptive sampling

is much greater than uniform sampling at the first iteration due to the small Ω̃ we chose for

the initial RoA estimation. Even within the adaptive sampling method, the sample distri-

butions are different depending on the shape of the estimated RoA. Therefore, the average

reward of −16.0 at the 100 th iteration and the 1200 th iteration have different meanings.

The learning curve with adaptive sampling fluctuates a lot at the beginning of the learn-

ing process because the initial estimation of the RoA does not match well with the actual

RoA. Once they become similar to each other as learning proceeds, the reward is stabilized

and shows slow changes. The relatively flat learning curve is due to the fact that all the

successful trials have similar rewards mostly between −18.0 and −10.0. We believe this

relationship between the reward and RoA expansion can be an interesting future work.

3.2.6 Stepping Controller

We also conduct experiments for expanding the RoA of the stepping controller Section ??.

For this set of experiments, we only consider forward perturbations Table Table 3.2.

We compare the learning curves in Figure Figure 3.16. Learning without a model-

based controller cannot recover balance from most of perturbations, even though it shows

improvement in terms of the reward function value. We believe that the stepping behavior is

difficult to automatically emerge without providing any prior knowledge, even after many

iterations. On the other hand, learning with a model-based controller is able to handle a

wide range of perturbations. The trained policy successfully adjusts stepping locations for

completely stopping the robot by generating additional torques to the hip and ankle joints.
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Figure 3.16: The learning curves for stepping controllers. Note that the learning curve with
adaptive sampling (blue) is measured from a different set of perturbations.

Figure 3.17: RoAs for stepping controllers.

It also shows reactive upper body motions to compensate induced angular momentum.

The adaptive sampling expands the RoA for the stepping controller more effectively.

Note that the learning curve of adaptive sampling (Figure Figure 3.16) does not have the

initial fluctuation seen with the postural controller (Figure Figure 3.13). This is because the

initial RoA estimate is larger than the actual RoA, which was smaller in the case of postural

control. Interestingly, learning with adaptive sampling almost sequentially expands each

direction of RoA: it learns first how to step right, and uses the experience to the front

and left steps. It might be due to asymmetric upper body motions of the initial control

policy that tends to move the left arm forward. We believe that this can be another way of

structuring tasks, which might be an interesting direction for future work.
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3.2.7 Correlation between RoA Size and Average Reward

One interesting observation from our experiments is that the average reward is not necessar-

ily correlated to the RoA size, which makes learning with uniform sampling more difficult

if the objective is maximizing the RoA. This is mainly because the rewards of failed simula-

tion samples have larger variances than successful trials. Therefore, the average reward can

increase when the controller slightly improves failed samples while sacrificing the success-

ful samples. This issue can be even worse when there exists many impossible perturbations

that cannot be handled by any controllers.

However, it is difficult to identify the exact RoA of the optimal controller before training

many different controllers. Therefore, learning with uniform sampling is likely to have

many impossible samples that can skew the average reward. On the other hand, adaptive

sampling can reduce impossible trials by continuously updating the current RoA.

3.2.8 Conclusion

This paper presented a learning framework for enhancing the performance of humanoid

balance controllers so that they can recover from a wider range of perturbations. The key

idea is to combine reinforcement learning with model-based controllers in order to expedite

the learning process. We also proposed a novel adaptive sampling scheme that maintains

the RoA during the learning process and samples the perturbations for training around its

boundary.

We conducted simulation experiments using two model-based controllers: an LQR-

based postural balance controller and an LIP-based stepping controller. We demonstrated

that the proposed framework can improve the controller performance within the same num-

ber of iterations. Furthermore, the controllers trained with adaptive sampling can accom-

modate larger perturbations than those with uniform sampling.

We tested the framework with different hyper-parameters for the proposed adaptive

sampling method. In our experience, the performance of the learning algorithm is not very
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sensitive to the hyper-parameters. For instance, the algorithm is able to automatically adjust

the estimated RoA even if we choose wrong initial magnitudes (Ω̃). The update frequency

K also did not significantly affect the convergence rate. However, we observed that a very

narrow range such as kl=0.9 and ku=1.0 caused over-fitting for stepping controllers and

cannot handle weaker perturbations around 41 N.

Although we empirically demonstrated the effectiveness of our framework, future work

could include more theoretical analysis. For instance, the idea of drawing samples from the

RoA boundary is based on intuition. It would be more convincing if we can provide more

statistical data that those boundary samples are more useful for learning than others.

Another possible future direction is to apply the proposed framework to other control

problems such as locomotion or getting up. In particular, the polygon (or polyhedron)

representation of the RoA may not be sufficient for these tasks due to high-dimensional

state space. Furthermore, the discontinuity due to collisions may result in discontinuous

RoA that cannot be expressed with the current representation. However, we believe that

the general idea of providing the learning process with tasks of appropriate difficulty levels

can be effective in other problems.

3.3 Expanding motor skills using relay networks

3.3.1 Motivation

Often, challenging robotic tasks suffer from sub-optimal behaviour due to finding local

optimum. Our insight into developing this algorithm is that, instead of learning one control

policy, the task could by simplified by learning multiple policies which work towards a

common goal of completing the task. Our approach begins by defining an initial set of

states from which achieving the goal is easy. For example, in the classical control task of

pendulum swing-up and balance, we start by learning a policy that achieves pole balancing.

Then, our algorithm gradually expands by finding states where the first policy fails, and

adds a new policy to the graph where the goal is to reach states in which the first policy is
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good at. The algorithm gradually expands the set of successful initial states by connecting

new policies, one at a time, to the existing graph until the robot can achieve the original

complex task. Each policy is trained for a new set of initial states with an objective function

that encourages the policy to drive the new states to previously identified successful states.

In our next work [15] , we introduced a new technique of building a graph of policies to

simplify learning a challenging control task. Similar to hierarchical reinforcement learning

(HRL) [58, 133] which decomposes a large-scale Markov Decision Process (MDP) into

sub-tasks, the key idea of this work is to build a directed graph of local policies represented

by neural networks, which we refer to as relay neural networks, illustrated in Figure 3.18.

The nodes of the graph are state distributions and the edges are control policies that connect

two state distributions.

Figure 3.18: Illustration of a
graph of policies in a relay net-
work. The policies in the graph
as sequentially executed in or-
der to complete a task.

We apply our algorithm to a set of challenging con-

trol problems and show that the policy is capable of solv-

ing the tasks in a sample efficient manner compared to

baselines such as a single policy or curriculum learning.

In addition to classical control problems like Cartpole

swingup, Hopper and 2D walker, we show that with a

combination of policies, we can control a 3-Dimensional

humanoid character with 23-Degrees of Freedom (DoF) with a goal of walking forward

while also balancing.

3.3.2 Method

Our approach to a complex robotic task is to automatically decompose it to a sequence

of subtasks, each of which aims to reach a state where the policy of its preceding subtask

is able to handle. The original complex task is formulated as a MDP described by a tuple

{S,A, r, T , ρ, P}, where S is the state space,A is the action space, r is the reward function,

T is the set of termination conditions, ρ = N(µρ,Σρ) is the initial state distribution, and
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P is the transition probability. Instead of solving for a single policy for the MDP, our

algorithm solves for a set of policies and value functions for a sequence of simpler MDP’s.

A policy, π : S × A 7→ [0, 1], is represented as a Gaussian distribution of action a ∈

A conditioned on a state s ∈ S. The mean of the distribution is represented by a fully

connected neural network and the covariance is defined as part of the policy parameters to

be optimized. A value function, V : S 7→ R, is also represented as a neural network whose

parameters are optimized by the policy learning algorithm.

We organize the MDP’s and their solutions in a directed graph Γ. A nodeNk in Γ stores

the initial state distribution ρk of the kth MDP, while a directed edge connects an MDP to

its parent MDP and stores the solved policy (πk), the value function (Vk), and the threshold

of value function (V̄k) (details in Section subsection 3.3.4). As the robot expands its skill

set to accomplish the original task, a chain of MDP’s and policies is developed in Γ. If

desired, our algorithm can be extended to explore multiple solutions to achieve the original

task. Section subsection 3.3.6 describes how multiple chains can be discovered and merged

in Γ to solve multi-modal problems.

3.3.3 Learning Relay Networks

The process of learning the relay networks (Algorithm algorithm 3) begins with defining

a new initial state distribution ρ0 which reduces the difficulty of the original MDP (Line

Line 3). Although our algorithm requires the user to define ρ0, it is typically intuitive to

find a ρ0 which leads to a simpler MDP. For example, we can define ρ0 as a Gaussian whose

mean, µρ0 , is near the goal state of the problem.

Once ρ0 is defined, we proceed to solve the first subtask {S,A, r, T , ρ0, P}, whose

objective function is defined as the expected accumulated discounted rewards along a tra-

jectory:

J0 = Es0:tf ,a0:tf
[

tf∑
t=0

γtr(st, at)], (3.9)

where γ is the discount factor, s0 is the initial state of the trajectory drawn from ρ0, and

42



Algorithm 3: LearnRelayNetworks
1: Input: MDP {S,A, r, T , ρ, P}
2: Add root node, N̄ = {∅}, to Γ
3: Define a simpler initial state distribution ρ0

4: Define objective function J0 according to Equation Equation 3.9
5: [π0, V0]← PolicySearch(S,A, ρ0, J0, T )
6: V̄0 ← ComputeThreshold(π0, V0, T , ρ0, J0)
7: Add node, N0 = {ρ0}, to Γ
8: Add edge, E = {π0, V0, V̄0, }, from N0 to N̄
9: k = 0

10: while πk does not succeed from ρ do
11: Tk+1 = T ∪ (Vk(s) > V̄k)
12: ρk+1 ← Compute new initial state distribution using Equation Equation 3.10
13: Define objective function Jk+1 according to Equation Equation 3.11
14: [πk+1, Vk+1]← PolicySearch(S,A, ρk+1, Jk+1, Tk+1)
15: V̄k+1 ← ComputeThreshold(πk+1, Vk+1, T , ρk+1, Jk+1)
16: Add node, N i

k+1 = {ρk+1}, to Γ
17: Add edge, E = {πk+1, Vk+1, V̄k+1}, from node Nk+1 to Nk
18: k ← k + 1
19: end while
20: return Γ

tf is the terminal time step of the trajectory. We can solve the MDP using PPO/TRPO or

A3C/DDPG to obtain the policy π0, which drives the robot from a small set of initial states

from ρ0 to states where the original task is completed, as well as the value function V0(s),

which evaluates the return by following π0 from state s (Line Line 5).

The policy for the subsequent MDP aims to drive the rollouts toward the states which π0

can successfully handle, instead of solving for a policy that directly completes the original

task. To determine whether π0 can handle a given state s, one can generate a rollout by

following π0 from s and calculate its return. However, this approach can be too slow for

online applications. Fortunately, many of the modern policy gradient methods, such as PPO

or A3C, produce a value function, which provides an approximated return from s without

generating a rollout. Our goal is then to determine a threshold V̄0 for V0(s) above which

s is deemed “good” (Line Line 6). The details on how to determine such a threshold are

described in Section subsection 3.3.4. We can now create the first nodeN0 = {ρ0} and add
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it to Γ, as well as an edge E = {π0, V0, V̄0} that connects N0 to the dummy root node N̄

(Line Line 7-Line 8).

Starting from N0, the main loop of the algorithm iteratively adds more nodes to Γ

by solving subsequent MDP’s until the last policy πk, via relaying to previous policies

πk−1, · · · π0, can generate successful rollouts from the states drawn from the original initial

state distribution ρ (Line Line 10). At each iteration k, we formulate the (k + 1)th sub-

sequent MDP by redefining Tk+1, ρk+1, and the objective function Jk+1, while using the

shared S, A, and P . First, we define the terminal conditions Tk+1 as the original set of

termination conditions (T ) augmented with another condition, Vk(s) > V̄k (Line Line 11).

Next, unlike ρ0, we define the initial state distribution ρk+1 through an optimization pro-

cess. The goal of the optimization is to find the mean of the next initial state distribution,

µρk+1
, that leads to unsuccessful rollouts under the current policy πk, without making the

next MDP too difficult to relay. To balance this trade-off, the optimization moves in a di-

rection that reduces the value function of the most recently solved MDP, Vk, until it reaches

the boundary of the “good state zone” defined by Vk(s) ≥ V̄k. In addition, we would like

µρk+1
to be closer to the mean of the initial state distribution of the original MDP, µρ.

Specifically, we compute µρk+1
by minimizing the following objective function subject to

constraints:

µρk =s Vk−1(s) + w‖s− µρ‖2

subject to Vk−1(s) ≥ V̄k−1

C(s) ≥ 0 (3.10)

where C(s) represents the environment constraints, such as the constraint that enforces

collision-free states. Since the value function Vk in Equation Equation 3.10 is differentiable

through back-propagation, we can use any standard gradient-based algorithms to solve

this optimization. Procedure for selecting the weighting coefficient w is explained in the
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appendix.

In addition, we define the objective function of the (k + 1)th MDP as follows:

Jk+1 = Es0:tf ,a0:tf
[

tf∑
t=0

γtr(st, at) + αγtfg(stf )], (3.11)

where g(stf ) =


Vk(stf ), Vk(stf ) > V̄k

0 otherwise.

.

Besides the accumulated reward, this cost function has an additional term to encourage

“relaying”. That is, if the rollout is terminated because it enters the subset of S where

the policy of the parent node is capable of handling (i.e. Vk(stf ) > V̄k), it will receive the

accumulated reward by following the parent policy from stf . This quantity is approximated

by Vk(stf ) because it recursively adds the accumulated reward earned by each policy along

the chain from Nk to N0. If a rollout terminates due to other terminal conditions (e.g.

falling on the ground for a locomotion task), it will receive no relay reward. Using this

objective function, we can learn a policy πk+1 that drives a rollout towards states deemed

good by the parent’s value function, as well as a value function Vk+1 that measures the long-

term reward from the current state, following the policies along the chain (Line Line 14).

Finally, we compute the threshold of the value function (Line Line 15), add a new node,

Nk+1, to Γ (Line Line 16), and add a new edge that connects Nk+1 to Nk (Line Line 17).

The weighting parameter α determines the importance of “relaying” behavior. If α is

set to zero, each MDP will attempt to solve the original task on its own without leveraging

previously solved policies. The value of α in all our experiments is set to 30 and we

found that the results are not sensitive to α value, as long as it is sufficiently large (Section

subsection 3.3.10).

3.3.4 Computing Threshold for Value Function

In practice, V (s) provided by the learning algorithm is only an approximation of the
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Algorithm 4: ComputeThreshold
1: Input: π, V, T , ρ = N(µρ,Σρ), J
2: Initialize buffer D for training data
3: [s1, · · · , sM ]← Sample states from N(µρ, 1.5Σρ)
4: [τ1, · · · , τM ]← Generate rollouts by following π and T from [s1, · · · , sM ]
5: Compute returns for rollouts: Ri = J(τi), i ∈ [1,M ]
6: R̄← Compute average of returns for rollouts not terminated by T
7: for i = 1 : M do
8: if Ri > R̄ then
9: Add (V (si), 1) in D

10: else
11: Add (V (si), 0) in D
12: end if
13: end for
14: V̄ ← Classify(D)
15: return V̄

true value function. We observe that the scores V (s) assigns to the successful states are

relatively higher than the unsuccessful ones, but they are not exactly the same as the true

returns. As such, we can use V (s) as a binary classifier to separate “good” states from

“bad” ones, but not as a reliable predictor of the true returns.

To use V as a binary classifier of the state space, we first need to select a threshold

V̄ . For a given policy, separating successful states from unsuccessful ones can be done as

follows. First, we compute the average of true return, R̄, from a set of sampled rollouts that

do not terminate due to failure conditions. Second, we compare the true return of a given

state to R̄ to determine whether it is a successful state (successful if the return is above

R̄). In practice, however, we can only obtain an approximated return of a state via V (s)

during policy learning and execution. Our goal is then to find the optimal V̄ such that the

separation of approximated returns by V̄ is as close as possible to the separation of true

returns by R̄.

Algorithm algorithm 4 summarizes the procedure to compute V̄ . Given a policy π, an

approximated value function V , termination conditions T , a Gaussian initial state distri-

bution ρ = N(µρ,Σρ), and the objective function of the MDP J , we first draw M states
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from an expanded initial state, N(µρ, 1.5Σρ) (Line Line 3), generate rollouts from these

sampled states using π (Line Line 4), and compute the true return of each rollout using J

(Line Line 5). Because the initial states are drawn from an inflated distribution, we ob-

tain a mixed set of successful and unsuccessful rollouts. We then compute the average

return of successful rollouts R̄ that do not terminate due to the terminal conditions T (Line

Line 6). Next, we generate the training set where each data point is a pair of the predicted

value V (si) and a binary classification label, “good” or “bad”, according to R̄ (i.e. Ri > R̄

means si is good) (Line Line 7-Line 10 ). We then train a binary classifier represented as a

decision tree to find to find V̄ (Line Line 14).

3.3.5 Applying Relay Networks

Once the graph of relay networks Γ is trained, applying the polices is quite straightforward.

For a given initial state s, we select a node c whose V (s) has the highest value among

all nodes. We execute the current policy πc until it reaches a state where the value of the

parent node is greater than its threshold (Vp(c)(s) > V̄p(c)), where p(c) indicates the index

of the parent node of c. At that point, the parent control policy takes over and the process

repeats until we reach the root policy. Alternatively, instead of always switching to the

parent policy, we can switch to another policy whose V (s) has the highest value.

3.3.6 Extending to Multiple Strategies

Optionally, our algorithm can be extended to discover multiple solutions to the original

MDP. Take the problem of cartpole swing-up and balance as an example. In Algorithm

algorithm 3, if we choose the mean of ρ0 to be slightly off to the left from the balanced

goal position, we will learn a chain of relay networks that often swings to the left and

approaches the balanced position from the left. If we run Algorithm algorithm 3 again with

the mean of ρ0 leaning toward right, we will end up learning a different chain of polices

that tends to swing to the right. For a problem with multi-modal solutions, we extend

47



Algorithm algorithm 3 to solve for a directed graph with multiple chains and describe

an automatic method to merge the current chain into an existing one to improve sample

efficiency. Specifically, after the current node Nk is added to Γ and the next initial state

distribution ρk+1 is proposed (Line Line 12 in Algorithm algorithm 3), we compare ρk+1

against the initial state distribution stored in every node on the existing chains (excluding

the current chain). If there exists a node Ñ with a similar initial state distribution, we merge

the current chain into Ñ by learning a policy (and a value function) that relays to Nk from

the initial state distribution of Ñ , essentially adding an edge from Ñ toNk and terminating

the current chain. Since now Ñ has two parents, it can choose which of the two policies

to execute based on the value function or by chance. Either path will lead to completion of

the task, but will do so using different strategies.

3.3.7 Results

We evaluate our algorithm on motor skill control problems in simulated environments. We

use DART physics engine [134] to create five learning environments similar to Cartpole,

Hopper, 2D Walker, and Humanoid environments in Open-AI Gym [135]. To demonstrate

the advantages of relay networks, our tasks are designed to be more difficult than those in

Open-AI Gym. Implementation details can be found in the supplementary document. We

compare our algorithm to three baselines:

• A single policy (ONE): ONE is a policy trained to maximize the objective function

of the original task from the initial state distribution ρ. For fair comparison, we train

ONE with the same number of samples used to train the entire relay networks graph.

ONE also has the same number of neurons as the sum of neurons used by all relay

policies.

• No relay (NR): NR validates the importance of relaying which amounts to the second

term of the objective function in Equation Equation 3.11 and the terminal condition,

Vk(s) > V̄k. NR removes these two treatments, but otherwise identical to relay
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networks. To ensure fairness, we use the same network architectures and the same

amount of training samples as those used for relay networks. Due to the absence of

the relay reward and the terminal condition Vk(s > V̄k, each policy in NR attempts to

achieve the original task on its own without relaying. During execution, we evaluate

every value function at the current state and execute the policy that corresponds to

the highest value.

• Curriculum learning (CL): We compare with curriculum learning which trains a sin-

gle policy with increasingly more difficult curriculum. We use the initial state dis-

tributions computed by Algorithm algorithm 3 to define different curriculum. That

is, we train a policy to solve a sequence of MDP’s defined as {S,A, r, T , ρk, P},

k ∈ [0, K], where K is the index of the last node on the chain. When training the

next MDP, we use previously solved π and V to ”warm-start” the learning.

3.3.8 Tasks

We will briefly describe each task in this section. Please see Appendix B in the supplemen-

tary document for detailed description of the state space, action space, reward function,

termination conditions, and initial state distribution for each problem.

• Cartpole: Combining the classic cartpole balance problem with the pendulum swing-

up problem, this example trains a cartpole to swing up and balance at the upright

position. The mean of initial state distribution, µρ, is a state in which the pole points

straight down and the cart is stationary. Our algorithm learns three relay policies to

solve the problem.

• Hopper: This example trains a 2D one-legged hopper to get up from a supine posi-

tion and hop forward as fast as possible. We use the same hopper model described

in Open AI Gym. The main difference is that µρ is a state in which the hopper lies

flat on the ground with zero velocity, making the problem more challenging than the

49



one described in OpenAI Gym. Our algorithm learns three relay policies to solve the

problem.

• 2D walker with initial push: The goal of this example is to train a 2D walker to

overcome an initial backward push and walk forward as fast as possible. We use the

same 2D walker environment from Open AI Gym, but modify µρ to have a negative

horizontal velocity. Our algorithm learns two relay policies to solve the problem.

• 2D walker from supine position: We train the same 2D walker to get up from a

supine position and walk as fast as it can. µρ is a state in which the walker lies flat

on the ground with zero velocity. Our algorithm learns three relay policies to solve

the problem.

• Humanoid walks: This example differs from the rest in that the subtasks are manu-

ally designed and the environment constraints are modified during training. We train

a 3D humanoid to walk forward by first training the policy on the sagittal plane and

then training in the full 3D space. As a result, the first policy is capable of walk-

ing forward while the second policy tries to brings the humanoid back to the sagittal

plane when it starts to deviate in the lateral direction. For this example, we allow

the policy to switch to non-parent node. This is necessary because while walking

forward the humanoid deviates from the sagittal plane many times.

3.3.9 Baselines Comparisons

We compare two versions of our algorithm to the three baselines mentioned above. The

first version (AUTO) is exactly the one described in Algorithm algorithm 3. The second

version (MANUAL) requires the user to determine the subtasks and the initial state dis-

tributions associated with them. While AUTO presents a cleaner algorithm with less user

intervention, MANUAL offers the flexibility to break down the problem in a specific way

to incorporate domain knowledge about the problem.
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Figure 3.19: Testing curve comparisons.

Figure Figure 3.19 shows the testing curves during task training. The learning curves

are not informative for comparison because the initial state distributions and/or objective

functions vary as the training progresses for AUTO, MANUAL, NR, and CL. The testing

curves, on the other hand, always computes the average return on the original MDP. That

is, the average objective value (Equation Equation 3.9) of rollouts drawn from the original

initial state distribution ρ. Figure Figure 3.19 indicates that while both AUTO and MAN-

UAL can reach higher returns than the baselines, AUTO is in general more sample efficient

than MANUAL. Further, training the policy to relay to the “good states” is important as

demonstrated by the comparison between AUTO and NR. The results of CL vary task by

task, indicating that relying learning from a warm-started policy is not necessarily helpful.

3.3.10 Analyses

Relay reward: One important parameter in our algorithm is the weight for relay reward,

i.e. α in Equation Equation 3.11. Figure 3.20(a) shows that the policy performance is not

sensitive to α as long as it is sufficiently large.

Accuracy of value function: Our algorithm relies on the value function to make ac-

curate binary prediction. To evaluate the accuracy of the value function, we generate 100

rollouts using a learned policy and label them negative if they are terminated by the termina-

tion conditions T . Otherwise, we label them positive. We then predict the rollouts positive

if they satisfy the condition, V (s) > V̄ . Otherwise, they are negative. Figure 3.20(c) shows

the confusion matrix of the prediction. In practice, we run an additional regression on the

value function after the policy training is completed to further improve the consistency be-
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Figure 3.20: (a) The experiment with α. (b) Comparison of ONE with different numbers
of neurons. (c) Confusion matrix of value function binary classifier (d) Confusion matrix
after additional regression.

tween the value function and the final policy. This additional step can further improve the

accuracy of the value function as a binary predictor (Figure 3.20(d)).

3.3.11 Conclusion

We propose a technique to learn a robust policy capable of controlling a wide range of

state space by breaking down a complex task to simpler subtasks. Our algorithm has a

few limitations. The value function is approximated based on the visited states during

training. For a state that is far away from the visited states, the value function can be very

inaccurate. Thus, the initial state distribution of the child node cannot be too far from the

parent’s initial state distribution. In addition, as mentioned in the introduction, the relay

networks are built on locally optimal policies, resulting globally suboptimal solutions to

the original task. The theoretical bounds of the optimality of relay networks can be an

interesting future direction.
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CHAPTER 4

FALL PREVENTION USING ASSISTIVE DEVICES

4.1 Motivation

More than three million older adults every year in the United States are treated for fall

injuries. In 2015, the medical costs for falls amounted to more than $50 billion. Com-

pounding to the direct injuries, fall-related accidents have long-lasting impact because

falling once doubles one’s chances of falling again. Even with successful recovery, many

older adults develop fear of falling, which may make them reduce their everyday activities.

When a person is less active, their health condition plummets which increases their chances

of falling again.

Designing a control policy to prevent falls on an existing wearable robotic device has

multiple challenges. First, the control policy needs to run in real-time with limited sensing

and actuation capabilities dictated by the walking device. Second, a large dataset of human

falling motions is difficult to acquire and unavailable to public to date, which imposes fun-

damental obstacles to learning-based approaches. Lastly and perhaps most importantly, the

development and evaluation of the fall-prevention policy depends on intimate interaction

with human users. The challenge of modeling realistic human behaviors in simulation is

daunting, but the risk of testing on real humans is even greater.

We tackle these issues by taking the approach of model-free reinforcement learning

(RL) in simulation to train a fall-prevention policy that operates on the walking device

in real-time, as well as to model the human locomotion under disturbances. The model-

free RL is particularly appealing for learning a fall-prevention policy because the problem

involves non-differentiable dynamics and lacks existing examples to imitate. In addition,

demonstrated by recent work in learning policies for human motor skills [136, 137], the
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model-free RL provides a simple and automatic approach to solving under-actuated control

problems with contacts, as is the case of human locomotion. To ensure the validity of these

models, we compare the key characteristics of human gait under disturbances to those

reported in the biomechanics literature [17, 69].

Specifically, we propose a framework to automate the process of developing a fall pre-

dictor and a recovery policy on an assistive walking device, by only utilizing the on-board

sensors and actuators. When the fall predictor predicts that a fall is imminent based on

the current state of the user, the recovery policy will be activated to prevent the fall and

deactivated when the stable gait cycle is recovered. The core component of this work is

a human walking policy that is robust to a moderate level of perturbations. We use this

human walking policy to provide training data for the fall predictor, as well as to teach the

recovery policy how to best modify the person’s gait to prevent falling.

Our evaluation shows that the human policy generates walking sequences similar to the

real-world human walking data both with and without perturbation. We also show quan-

titative evaluation on the stability of the recovery policy against various perturbation. In

addition, our method provides a quantitative way to evaluate the design choices of assistive

walking device. We analyze and compare the performance of six different configurations

of sensors and actuators, enabling the engineers to make informed design decisions which

account for the control capability prior to manufacturing process.

4.2 Method

We propose a framework to automate the process of augmenting an assistive walking de-

vice with the capability of fall prevention. Our method is built on three components: a

human walking policy, a fall predictor, and a recovery policy. We formulate the problem

of learning human walking and recovery policies as Markov Decision Processes (MDPs),

(S,A, T , r, p0, γ), where S is the state space, A is the action space, T is the transition

function, r is the reward function, p0 is the initial state distribution and γ is a discount
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factor. We take the approach of model-free reinforcement learning to find a policy π, such

that it maximizes the accumulated reward:

J(π) = Es0,a0,...,sT

T∑
t=0

γtr(st, at),

where s0 ∼ p0, at ∼ π(st) and st+1 = T (st, at).

We denote the human walking policy as πh(ah|sh) and the recovery policy as πe(ae|se),

where sh, ah, se, and ae, represent the corresponding states and actions, respectively. Our

method can be applied to assitive walking devices with any sensors or actuators, though we

assume that the observable state se of the walking device is a subset of the full human state

sh due to sensor limitations. Since our method is intended to augment an assistive walking

device, we also assume that the user who wears the device is capable of walking. Under

such an assumption, our method only needs to model normal human gait instead of various

pathological gaits. Our framework can be applied to any kind of external perturbation

which causes a fall. We evaluate our algorithm with pushes to the pelvis, although falls

in the real-world are typically not caused by pushes but rather by slips or trips, data for

validating our human policy is more readily available for pushing, such as [69] and [138].

we consider this as a first-step towards a more general recovery policy.

Figure 4.1: Left : We model a 29-Degree of Freedom(DoF) humanoid and the 2-DoF
exoskeleton in PyDart. Right : Assistive device design used in our experiments.
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4.2.1 Human Walking Policy

We take the model-free reinforcement learning approach to develop a human locomotion

policy πh(ah|sh). To achieve natural walking behaviors, we train a policy that imitates

the human walking reference motion similar to Peng et al. [136]. The human 3D model

(agent) consists of 23 actuated joints with a floating base as shown in Figure Figure 4.1.

This gives rise to a 53 dimensional state space sh = [q, q̇,vcom,ωcom, φ], including joint

positions, joint velocities, linear and angular velocities of the center of mass (COM), and

a phase variable that indicates the target frame in the motion clip. We model the intrinsic

sensing delay of a human musculoskeletal system by adding a latency of 40 milliseconds to

the state vector before it is fed into the policy. The action determines the target joint angles

qtargett of the proportional-derivative (PD) controllers, deviating from the joint angles in the

reference motion:

qtargett = q̂t(φ) + at, (4.1)

where q̂t(φ) is the corresponding joint position in the reference motion at the given phase

φ. Our reward function is designed to imitate the reference motion:

rh(sh, ah) = wq(q − q̂(φ)) + wc(c − ĉ(φ)) + we(e − ê(φ)) − wτ ||τ ||2, (4.2)

where q̂, ĉ, and ê are the desired joint positions, COM positions, and end-effector positions

from the reference motion data, respectively. The reward function also penalizes the mag-

nitude of torque τ . We use the same weight wq = 5.0, wc = 2.0, we = 0.5, and wτ = 0.005

for all experiments. We also use early termination of the rollouts, if the agent’s pelvis drops

below a certain height or if the base rotates about any axis beyond a threshold, we end the

rollout and re-initialize the state.

Although the above formulation can produce control policies that reject small distur-

bances near the target trajectory, they often fail to recover from perturbations with larger
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magnitude, such as those encountered during locomotion. It is critical to ensure that our

human walking policy can withstand the same level of perturbation as a capable real per-

son, so that we can establish a fair baseline to measure the increased stability due to our

recovery policy.

Therefore, we exert random forces to the agent during policy training. Each random

force has a magnitude uniformly sampled from [0, 800] N and a direction uniformly sam-

pled from [-π/2,π/2], applied for 50 milliseconds on the agent’s pelvis in parallel to the

ground. The maximum force magnitude induces a velocity change of roughly 0.6m/sec.

This magnitude of change in velocity is comparable to experiments found in literature such

as [69],[138] and [70]. We also randomize the time when the force is applied within a gait

cycle. Training in such a stochastic environment is crucial for reproducing the human abil-

ity to recover from a larger disturbance during locomotion. We represent a human policy

as a multi-layered perceptron (MLP) neural network with two hidden layers of 128 neurons

each. The formulated MDP is trained with Proximal Policy Optimization (PPO) [PPO].

4.2.2 Fall Predictor

Being able to predict a fall before it happens gives the recovery policy critical time to alter

the outcome in the near future. We take a data-driven approach to train a classifier capable

of predicting the probability of the fall in the next 40 milliseconds. Collecting the training

data from the real world is challenging because induced human falls can be unrealistic and

dangerous/tedious to instrument. As such, we propose to train such a classifier using only

simulated human motion. Our key idea is to automatically label the future outcome of a

state by leveraging the trained human policy πh. We randomly sample a set of states sh and

add random perturbations to them. By following the policy πh from each of the sampled

states, we simulate a rollout to determine whether the state leads to successful recovery or

falling. We then label the corresponding state observed by the walking device, (se, 1) if

succeeds, or (se, 0) if fails. We collect about 50000 training samples. Note that the input of
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the training data corresponds to the state of the walking device, not the full state of human,

as the classifier will only have access to the information available to the onboard sensors.

We train a support vector machine (SVM) classifier with radial basis function kernel

to predict if a state se has a high chance of leading to a fall or not. We perform a six-fold

validation test on the dataset and the classifier achieves an accuracy above 94%.

4.2.3 Recovery Policy

The recovery policy aims to utilize the onboard actuators of the assistive walking device

to stabilize the gait such that the agent can continue to walk uninterruptedly. The recovery

policy πe is trained to provide optimal assistance to the human walking policy when a

fall is detected. The state of πe is defined as se = [ω̇,ω,qhip, q̇hip], which comprises of

angular acceleration, angular velocity, and hip joint angle position and velocity, amounting

to 10 dimensional state space. We envision to measure these quantities through an Inertial

Measurement Unit(IMU) and a motor encoder at the hip. IMU outputs angular velocity

and we would compute angular acceleration using finite difference method. Although,

IMU provides us with linear acceleration as well, in practice we observed it has very noisy

readings, hence we decided to omit it in our state. The action space consists of torques at

two hip joints. The reward function maximizes the quality of the gait while minimizing the

impact of disturbance:

re(sh, ae) = rwalk(sh)− w1‖vcom‖ − w2‖ωcom‖ − w3‖ae‖, (4.3)

where rwalk evaluates walking performance using Equation Equation 5.2 except for the last

term, and vcom and ωcom are the global linear and angular velocities of the pelvis. We use

the same weight w1 = 2.0, w2 = 1.2 and w3 = 0.001 for all our experiments. Note that

the input to the reward function includes the full human state sh. While the input to the

recovery policy πe should be restricted by the onboard sensing capability of the assistive
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walking device, the input to the reward function can take advantage of the full state of

the simulated world, since the reward function is only needed at training time. The policy

is represented as a MLP neural network with two hidden layers of 64 neurons each and

trained with PPO.

4.2.4 Results

We validate the proposed framework using the open-source physics engine DART [139].

Our human agent is modeled as an articulated rigid body system with 29 degrees of free-

dom (dofs) including the six dofs for the floating base. The body segments and the mass

distribution are determined based on a 50th percentile adult male in North America. We

select the prototype of our assistive walking device as the testbed.Similar prototypes are

described in [ExoDesign, 140, 141]. It has two cable-driven actuators at hip joints, which

can exert about 200 Nm at maximum. However, we limit the torque capacity to 30, beyond

this value, the torque saturates. Sensors, such as Inertial Measurement Units (IMU) and

hip joint motor encoders, are added to the device. We also introduce a sensing delay of 40

to 50 ms. We modeled the interaction between the device and human by adding positional

constraints on the thigh and anchor points. For all experiments, the simulation time step is

set to 0.002s.

We design experiments to systematically validate the learned human behaviors and ef-

fectiveness of the recovery policy. Particularly, our goal is to answer the following ques-

tions:

1. How does the motion generated by the learned human policy compare to data in the

biomechanics literature?

2. Does the recovery policy improve the robustness of the gaits to external pushes?

3. How does the effectiveness of the assistive walking device change with design choices?
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Figure 4.2: Comparison between hip and knee joint angles during walking generated by
the policy and human data [17].

4.2.5 Comparison of Policy and Human Recovery Behaviors

We first validate the steady walking behavior of the human policy by comparing it to the

data collected from human-subject experiments. Figure Figure 4.2 shows that the hip and

knee joint angles generated by the walking policy well match the data reported in Winter

et al. [17]. We also compare the “torque loop” between the gait generated by our learned

policy and the gait recorded from the real world [17]. A torque loop is a plot that shows the

relation between the joint degree of freedom and the torque it exerts, frequently used in the

biomechanics literature as a metric to quantify human gait. Although the torque loops in

Figure ?? are not identical, both trajectories form loops during a single gait cycle indicating

energy being added and removed during the cycle. We also notice that the torque range and

the joint angle range are similar.

In addition, we compare adjusted footstep locations due to external perturbations with

the studies reported by Wang et al. [69]. Their findings strongly indicate that the COM dy-

namics is crucial in predicting the step placement after disturbance that leads to a balanced

state. They introduced a model to predict the changes in location of the foot placement

of a normal gait as a function of the COM velocity. Figure Figure 4.3 illustrates the foot

placements of our model and the model of Wang et al. against four pushes with different
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Figure 4.3: (a) Comparison of torque loops of a typical trajectory generated by our policy
and human data reported by [17] at the hip of stance leg during a gait cycle. The green dots
indicate the start and the black dots indicate 50% of the gait cycle. The arrows show the
progression of the gait from 0% to 100%. (b) Comparison of the forward foot step locations
predicted by the policy and by the model reported by Wang et al. [69] as a function of the
COM velocity.

magnitudes in the sagittal plane. For all scenarios, the displacement error is below 4 cm.

4.2.6 Effectiveness of Recovery Policy

Figure 4.4: Four different timing of the left leg swing phase during which we test the
performance of the assistive device. First is at 10% of the phase and then subsequently
30%, 60% and 90% of the left swing leg.

We test the performance of the learned recovery policy in the simulated environment

with external pushes. As a performance criterion, we define the stability region as a range

of external pushes from which the policy can return to the steady gait without falling. For

better 2D visualization, we fix the pushes to be parallel to the plane, applied on the same

location with the same timing and duration (50 milliseconds). All the experiments in this

section use the default sensors and actuators provided by the prototype of the walking
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(a)

Figure 4.5: Stability region with and without the use of a recovery policy. A larger area
shows increased robustness to an external push in both magnitude and direction.

device: an IMU, hip joint motor encoders, and hip actuators that control the flexion and

extension of the hip.

Figure Figure 4.5 compares the stability region with and without the learned recovery

policy. The area of stability region is expanded by 35% when the recovery policy is used.

Note that the stability region has very small coverage on the negative side of y-axis which

corresponds to the rightward forces. This is because we push the agent when the swing

leg is the left one, making it difficult to counteract the rightward pushes. Figure Figure 4.7

shows one example of recovery motion.

The timing of the push in a gait cycle has a great impact on fall prevention. We test our

recovery policy with perturbation applied at four different phases during the swing phase

(Figure Figure 4.4). We found that the stability region is the largest when the push is applied

at 30% of the swing phase and the smallest at 90% (Figure Figure 4.6, Top). This indicates

that the perturbation occurs right before heel strike is more difficult to recover than the one

occurs in early swing phase possibly due to the lack of time to adjust the foot location. The

difference in the stability region is approximately 28%. The bottom of Figure Figure 4.6

shows the impact of the perturbation timing on COM velocity over four gait cycles. The

results echo the previous finding as it shows that the agent fails to return to the steady state

when the perturbation occurs later in the swing phase.
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Figure 4.6: Comparison of recovery performance when perturbation is applied at four dif-
ferent phases. Top: Comparison of stability region. Bottom: Comparison of COM veloc-
ity across five gait cycles. Perturbation is applied during the gait cycle ’p’. The increasing
velocity after perturbation indicates that our policy is least effective at recovering when the
perturbation occurs later in the swing phase.

Figure 4.7: Top: Successful gait with an assistive device. Bottom: Unsuccessful gait
without an assistive device. Torques are set to zero.
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Figure 4.8: Average torques at the hip joints from 50 trials with various perturbations. The
shaded regions represent the 3-sigma bounds. Red: Joint torques exerted by the human and
the recovery policy. Blue: Human joint torques without a recovery policy. Green: Torques
produced by a recovery policy.

We also compare the generated torques with and without the recovery policy when

perturbation is applied. Figure Figure 4.8 shows the torques at the hip joint over the entire

gait cycle (not just swing phase). We collect 50 trajectory for each scenario by applying

random forces ranging from 200N to 800N at the fixed timing of 30% of the gait cycle.

The results show that hip torques exerted by the human together with the recovery policy

do not change the overall torque profile significantly, suggesting that the recovery policy

makes minor modification to the torque profile across the remaining gait cycle, instead of

generating a large impulse to stop the fall. We also show that the torque exerted by the

recovery policy never exceeds the actuation limits of the device.

4.2.7 Evaluation of Different Design Choices

Our method can be used to inform the selection of sensors and actuators when designing

a walking device with the capability of fall prevention. We test two versions of actuators:

the 2D hip device can actuate the hip joints only in the sagittal plane while the 3D device

also allows actuation in the frontal plane. We also consider three different configurations

of sensors: an inertial measurement unit (IMU) that provides the COM velocity and ac-
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Figure 4.9: Stability region for six policies trained with three sensor configurations and two
actuator configurations.

celeration, a motor encoder that measures hip joint angles, and the combination of IMU

and motor encoder. In total, we train six different recovery policies with three sensory in-

puts and two different actuation capabilities. For each sensor configuration, we train a fall

predictor using only sensors available to that configuration.

Figure Figure 4.9 shows the stability region for each of the six design configurations.

The results indicate that 3D actuation expands the stability region in all directions signifi-

cantly comparing to 2D actuation, even when the external force lies on the sagittal plane.

We also found that the IMU sensor plays a more important role than the motor encoder,

which suggests that COM information is more critical than the hip joint angle in informing

the action for recovery. The recovery policy performs the best when combining the IMU

and the joint encoder, as expected.

4.2.8 Conclusion

We presented an approach to automate the process of augmenting an assistive walking

device with ability to prevent falls. Our method has three key components : A human

walking policy, fall predictor and a recovery policy. In a simulated environment we showed

that an assistive device can indeed help recover balance from a wider range of external

perturbations. We introduced stability region as a quantitative metric to show the benefit
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of using a recovery policy. In addition to this, stability region can also be used to analyze

different design choices for an assistive device. We evaluated six different sensor and

actuator configurations.

In this work, we only evaluated the effectiveness of using a recovery policy for an

external push. It would be interesting to extend our work to other kinds of disturbances

such as tripping and slipping. Another future direction we would like to take is deploying

our recovery policy on the real-world assistive device. This would need additional efforts

to make sure that our recovery policy also can adjust for the differences in body structure

of users.
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CHAPTER 5

ERROR-AWARE POLICY LEARNING

5.1 Motivation

Humans exhibit remarkably large variations in gait characteristics during steady-state walk-

ing as well as push recovery. Due to this, assistive device controllers tuned for one individ-

ual often do not work well when tested on another person. Typically, fine tuning a controller

for each person has been the go-to approach thus far, but this process can be a very time

consuming ,tedious and unsafe for the user.

In this work, we introduce a novel approach to tackle sim-to-real problems in which the

environment dynamics has high variance and is highly unobservable. While our approach

is motivated by physical assistive robotic applications, the method can be applied to other

tasks in which many dynamic parameters are challenging to model. We propose to train a

policy explicitly aware of the effect of unobservable factors during training, called an Error-

Aware policy (EAP). Akin to the high-level idea of meta learning, we divide the dynamical

environments into training and validation sets and ”emulate” a reality gap in simulation.

Instead of estimating the model parameters that give rise to the emulated reality gap, we

train a function that predicts the deviation (i.e. error) of future states due to the emulated

reality gaps. Conditioned on the error predictions, the error-aware policies (EAPs) can

learn to overcome the reality gap, in addition to mastering the task.

The main application in this work is to learn an error-aware policy for assistive device

control, such as a hip-exoskeleton that helps the user to recover balance during locomotion.

From biomechanical data of human gait, we model multiple virtual human walking agents,

each varying in physical characteristics as well as parameters that affect the dynamics such

as joint damping, torque limits, ground friction, and sensing and actuation delay. We then
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train a single policy on this group of human agents and show that that the learned EAP

works effectively when tested on a different human agent without needing additional data.

We extend the prior work, [16], that trained a control policy for push-recovery assistive de-

vice for just one simulated human agent, and develop an algorithm that enables the learned

policy to transfer to other human agents with unseen biomechanical characteristics.

We evaluate our approach on assistive wearable device by quantifying the stability and

gait characteristics generated by an unseen human agent wearing the device with the trained

EAP. We present a comprehensive study of the benefits of our approach over prior zero-shot

methods such as universal policy (UP) and domain randomization (DR). We also provide

results on some standard RL environments, such as Cartpole, Hopper, 2D walker and a

quadrupedal robot.

5.2 Method

We present a method to achieve the zero-shot transfer of control policies in partially ob-

servable dynamical environments. We consider robotic systems and environments with

unobservable or unmeasurable model parameters, which make building accurate simula-

tion models difficult.

We present a novel policy architecture, an Error-Aware Policy (EAP), that is explicitly

aware of errors induced by unobservable dynamics parameters and self-corrects its actions

according to the errors. An EAP takes the current state, observable dynamic parameters,

and predicted errors as inputs and generates corrected actions. We learn an additional error-

prediction function that outputs the expected error. Both the error-aware policy and the

error-prediction function, are iteratively learned using model-free reinforcement learning

and supervised learning.
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Figure 5.1: Overview of An Error-aware Policy (EAP). An EAP takes the “expected” future
state error as an additional input. The expected error is predicted based on the current state
s, observable parameters µ, and an uncorrected action a that assumes zero error.

5.2.1 Problem Formulation

We formulate the problem as Partially Observable Markov Decision Processes (PoMDPs),

(S,O,A, P,R, ρ0, γ), where S is the state space, O is the observation space, A is the action

space, P is the transition function, R is the reward function, ρ0 is the initial state distribu-

tion and γ is a discount factor. In our formulation, we make a clear distinction between

observable model parameters µ and unobservable parameters ν of the agent and environ-

ment. Observable quantities are parameters that can be easily measured such as masses or

link lengths, whereas unobserved quantities are challenging to estimate, such as circuit dy-

namics or backlash. Therefore, both µ and ν affect the transition function P (s′|a, s,µ,ν).

Since we can configure our simulator with both µ and ν, we can randomly sample µ and ν

and create a list of K different environments D = {(µ0,ν0), (µ1,ν1), · · · , (µK ,νK)}, but

it is hard to obtain ν at testing time. In this case, the transition function will be abbreviated

as P (s′|s, a,µ).

Instead of estimating the values of unobserved quantities, we capture the effect of these

parameters by defining a metric called a state-error. When transferring from one environ-

ment to another, the action a applied at a given state s will produce different next states due

to the differences in both µ and ν, in other words, a state-error.

We hypothesize that a policy which is explicitly aware of the state-error would be able

to make better decisions by self-correcting its action. We call this an error-aware policy

π(a|s,µ, e) (EAP), which takes in observable parametersµ as well as the “expected” future
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state error in a new environment e as input (Figure Figure 5.1).

We present a novel training methodology using model-free reinforcement learning that

involves learning two functions: an error-aware policy and an error prediction function.

First, we learn an error-aware policy that takes the output of error prediction function E

as an input and has the ability to generalize to novel environments in a zero-shot manner.

Simultaneously, we learn an error-prediction function, which takes as inputs the state s, an

uncorrected action a and observable parameters µ, and outputs the expected state error e

when a policy trained in one environment is deployed to a different oneE : (s, a,µ) 7→ Rn.

We will discuss more details of training in the following sections.

Algorithm 5: Train an Error Aware Policy.
1: Input: Environments D = {(µ0,ν0), · · · , (µK ,νK)}
2: Pre-train π(a|s,µ0, e = 0) for P (s′|s, a,µ0) reference environment with e = 0
3: while not done do
4: Sample an environment with (µ,ν) from D
5: for each policy update iteration do
6: Initialize buffer B = {}
7: Update an error function E using Algorithm algorithm 7
8: B = Generate rollouts using Algorithm algorithm 6
9: Update policy π using B with PPO.

10: end for
11: end while
12: return π(a, |s,µ, e)

5.2.2 Training an Error-aware Policy

Training Procedure. The training process of an error-aware policy is summarized in Al-

gorithm algorithm 5. Assume that we have an oracle error function E(s, a,µ) that outputs

the expected state error in a novel environment, which will be explained in the following

section. First, the policy is pre-trained to achieve the desired behavior only in the refer-

ence environment (µ0,ν0) assuming there is no state error, π(a|s,µ0, e = 0). Once the

policy is trained in the reference environment, we sample dynamics parameters µi and νi

(i > 0) uniformly from the data set D and evaluate the EAP in this new environment. The
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policy parameters are updated using a model-free reinforcement learning algorithm, Prox-

imal Policy Optimization [52]. Sampling new testing environments and updating policy

parameters are repeated until the convergence.

Algorithm 6: Generate Rollouts
1: Input: Observable dynamics parameters µ, Transition function P , Current policy π

and error function E, Replay buffer B
2: Sample state s from initial state distribution ρ0

3: while not done do
4: a ∼ π(a|s,µ, e = 0) // original action
5: e = E(s, a,µ) // predicted error
6: â ∼ π(a|s,µ, e) // error-aware action
7: s′ ∼ P (s′|s, â,µ)
8: r = R(s, â)
9: B = B ∪ {(s, â, r, s′,µ)}

10: s = s′

11: end while
12: return B

Rollout Generation. A roll-out generation procedure is described in Algorithm algo-

rithm 6. Given a state s in this environment (µ,ν), we query an action from policy π

as if the policy is being deployed in the reference environment with e = 0. This action a

is fed into the error function E which predicts the expected state error in this environment,

then the state error is passed into the error-aware policy to query a corrected action â which

will be applied to the actual system. The task rewardR(s, a) guides the policy optimization

to find the best “corrected” action that maximizes the reward.

5.2.3 Training an Error Function

In reality, we do not have an oracle error function that can predict the next state due to the

lack of unobservable parameters ν. To this end, we will learn this function simultaneously

with EAP, by splitting the dataset D into the training and validation sets. Similar to training

methodology followed in meta-learning algorithms, we repeatedly apply the trained policy

into sampled environments from the validation set. Because our nominal behavior is pre-
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Algorithm 7: Train an Error Prediction Function.
1: Input: Reference environment with µ0

2: Input: Target environment with µ
3: Input: Replay Buffer B
4: Input: Dataset Z
5: Input: Error Horizon T
6: while not done do
7: Sample the initial state s0

0 from B
8: s0 = s0

0

9: for t = 0 : T − 1 do
10: // Simulation in Reference Env
11: at0 ∼ π(a|st0,µ0, e = 0)
12: st+1

0 ∼ P (st0, a
t
0,µ0)

13: // Simulation in Validation Env
14: at ∼ π(a|st,µ, e = 0)
15: st+1 ∼ P (st, at,µ)
16: end for
17: Z = Z ∪ {(s0, a0, sT , sT0 ,µ)}
18: end while
19: minimize the L(φ) in Eq. Equation 5.1 using Z.
20: return φ

trained in the reference environment (µ0,ν0), we compute the errors by measuring the

differences in the reference environment (µ0,ν0) and the validation environment (µ,ν):

e = (̄s′ − s′) ∈ Rn, generated by two dynamic models P (s′|s, a,µ0) and P̄ (s′|s, a,µ).

Horizon of Error Prediction. In practice, we found that the error accumulated during

one step is often not sufficient to provide useful information to the EAP. To overcome this

challenge, we take the state in the collected trajectory and further simulate it for T steps in

both the reference environment P (s′|s, a,µ0) and the validation environment P̄ (s′|s, a,µ).

We provide analysis on the effect of horizon length from T = 1 to T = 8 in the Section ??.

Loss Function. Since the differences between the two dynamical environments reflects the

reality gap caused by unobservable parameters, the error prediction function E enables us

to learn the effect of the unobserved parameters captured through the state error. We train

our error prediction function E to learn this “emulated” sim-to-real gap by minimizing the
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Figure 5.2: Left : A full state error representation input into the policy vs Right : Projected error
representation as an input to the policy

following loss:

L(φ) =
∑

(s0,a0,sT ,sT0 ,µ)∈Z

||E(s0, a0,µ)− (sT0 − sT )||2, (5.1)

where Z is the collected dataset and φ is the parameters or the neural net representing E.

Algorithm algorithm 7 summarizes the training procedure.

Reduced Representations. We experiment with two different representations of the error

input to the policy. First, we input the full state error e = sT0 − sT (with the same dimension

as the state) approximated by a MLP neural network, into the policy. Second, we use a

network architecture with an information bottle neck, as illustrated in Figure Figure 5.2,

and input the latent representation ep into the policy. The same loss function L is used to

train both the functions.

5.3 Results

We design experiments to validate the performance of error-aware policies. We aim to

answer the following research questions.

1. Does an EAP show better zero-shot transfer on unseen environments compared to

the baseline algorithms?

2. How does the choice of hyperparameters affect the performance of an EAP?
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Table 5.1: Tasks and Network Architectures

Task Observable Params. µ Unobservable Params. ν Net. Arch. Err. Dim. |ep|
Assitive Walking mass, height, leg length, and foot length joint damping, max torques, PD gains and delay (64, 32) 6
Aliengo PD gains, link masses sensor delay, joint damping, ground friction (64, 32) 6
Cartpole pole length, pole mass, cart mass joint damping, joint friction (32, 16) 2
Hopper thight mass, foot mass, shin length joint damping, ground friction (32, 16) 4
Walker 2D link masses, shin length sensing delay, joint damping, ground friction (64, 32) 5

Table 5.2: Ranges of variation for observable parameters during training and testing in the
assistive walking task.

Observable Params. µ
Parameter Training range Testing range
Mass [45,76] kg [55,95] kg
Height [143,182] cm [155,197] cm
Leg-length [70,88] cm [80,95] cm
foot length [21,24] cm [24,26] cm

5.3.1 Baseline Algorithms

We compare our method with two baselines commonly used for sim-to-real policy transfer,

Domain Randomization (DR)[82, 85] and Universal Policy (UP) [95]. DR aims to learn

a more robust policy for zero-shot transfer, by training with randomly sampled dynamics

parameters (in our case, both µ and ν). UP extends DR by taking dynamics parameters as

additional input. UP often transfer to target environments better than DR, but it explicitly

requires to know dynamics parameters, where ν is assumed to be unobservable in our

scenario. We did not compare EAPs against meta-learning algorithms [105, 107, 106],

which require additional samples from the validation environment.

5.3.2 Tasks

We evaluate the performance of error-aware policies on five different tasks. The first task is

about push-recovery of an assistive walking device for simulated humans, inspired by the

work of Kumar et al [16]. The second task is locomotion of a quadrupedal robot, Aliengo

Explorer[142]. The rest three tasks are CartPole, Hopper, and Walker2D, which are from

the OpenAI benchmark suite [143].
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Table 5.3: Ranges of variation for unobservable parameters during training and testing in
the assistive walking task.

Unobservable Params. ν
Parameter Training range Testing range
Joint damping [0.3,0.6] [0.5,0.8]
Max torques [120,180] [155,200]
PD gains (P,D) [(500,25),(750,50)] [(650,30),(800,50)]
Delay [30,60] ms [45,70] ms

Figure 5.3: Five different test subjects for the assistive walking experiment with varying
height, mass, leg length and foot length from the biomechanical gait dataset [144].

Assistive walking device for push recovery

In this task, the goal is to learn a policy for an assistive wearable device (i.e. exoskeleton) to

help a human recover balance after an external push is applied. (inset figure). We use a hip

exoskeleton that applies torques in 2-degrees of freedom at each hip joint. Our algorithm

begins by training 15 human agents using public biomechanical gait data [144] to walk in

a steady-state gait cycle, similar to the approach presented in [136]. The 15 agents vary in

mass, height, leg length, and foot length according to the biomechanical data used to train

their corresponding policies, which formulate the four-dimensional observable parameters

µ (Figure Figure 5.3). We also vary each human agent’s joint damping, maximum joint

torques, PD gains, and sensory delay as the four dimensional unobservable parameters ν.

We split the 15 human agents into 10 for the training set and 5 as the testing set.

Human Behavior Modeling. First, we capture the human behavior by training a human-

only walking policy πh that mimics the reference motion which frames are denoted as q̄.

75



Each human model has 23 actuated joints along with a floating base. The state space has

53 dimensions, sh = [q, q̇,vcom,ωcom, ψ], which represent joint positions, joint velocities,

linear and angular velocities of the center of mass, and a phase variable ψ that indicates the

target frame in the reference biomechanical gait cycle. The action a is defined as the offset

to the reference biomechanical joint trajectory q̄(ψ), which results in the target angles:

qtarget = q̄ + a. The reward function encourages mimicking the reference motions from

public biomechanical data:

Rhuman(sh, ah) = wq(q− q̄) +wv(q̇− ¯̇q) +wc(c− c̄) +wp(p− p̄)−wτ ||τ ||2, (5.2)

where the terms include the reference joint positions q̄, joint velocities ¯̇q, end-effector

locations p̄, contact flags c, and the joint torques τ . During training, we exert random

forces to the agent during policy training. Each random force has a magnitude uniformly

sampled from [0, 800]N and a direction uniformly sampled from [-π/2,π/2], applied for 50

milliseconds on the agent’s pelvis in parallel to the ground. The maximum force magnitude

induces a velocity change of roughly 0.6−0.8 m/sec. This magnitude of change in velocity

is comparable to experiments found in biomechanics literature such as [69],[138] and [70].

We also randomize the time when the force is applied within a gait cycle. The forces are

applied once at a randomly chosen time in each trajectory rollout. Similar to [16], we

enforce joint torque constraints and introduce sensing delays during training to prevent the

human agent to adapt to external disturbance really well.

MDP Formulation. Once the human agents are trained, we begin learning the push-

recovery EAP for the assistive device. The objective is to stabilize the human gait from ex-

ternal perturbations. The 17 dimensional state of robot is defined as se = [ω,α, ẍ,qhip, q̇hip],

which comprises angular velocity, orientation, linear acceleration, hip joint positions, and

hip joint velocity. The four dimensional action ae consists of torques at two hip joints.

The reward function maximizes the quality of the gait while minimizing the impact of an
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external push.

Rexo(sh, se, ae) = Rhuman(sh) − w1‖vcom‖ − w2‖ωcom‖ − w3‖ae‖, (5.3)

where Rhuman is defined in equation Equation 5.2 , and vcom and ωcom are the global linear

and angular velocities of the pelvis. The last term penalizes the torque usage. We use the

same weight w1 = 2.0, w2 = 1.2 and w3 = 0.001 for all our experiments.

Quadrupedal Locomotion

In our second task, we learn a control policy that generates a walking motion for a quadrupedal

robot, Aliengo Explorer [142]. For this task, the 17 observable parameters (µ) are PD gains

of the joints, link and root masses and the 10 unobservable parameters ν include sensing

delay, joint damping of thigh and knee joints and ground friction. The 39-dimensional state

space consists of torso position and orientation and corresponding velocities, joint position

and velocities, foot contact variable that indicates when each foot should be in contact with

the ground, while the 12-dimensional action space consists of joint velocity targets which

is fed into a PD controller that outputs torques to each joint.

The reward function is designed to track the target motion that walks at 0.8 m/s:

r(s, a) = w1e
−k1∗(q−q̄) + w2e

−k2∗(q̇−¯̇q) + w3 min(ẋ, 0.8) +
4∑
i=1

||ci − c̄i||2. (5.4)

In this equation, the first term encourages to track the desired joint positions, the second

term is to track the desired joint velocities, the third term is for matching the forward

velocity ẋ to a target velocity of 0.8 m/s. and the four term tracks the predefined contact

flags. We use the same weight k1 = 35,w1 = 0.75, k2 = 2,w2 = 0.20, and w3 = 1.0 for all

experiments.
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OpenAI Environments

We test our method on three OpenAI environments: CartPole, Hopper and Walker2D.

While using the same state spaces, action spaces, and the reward functions described in

the benchmark [143], we additionally define observable and unobservable dynamics pa-

rameters as follows:

1. Cartpole. Observable parameters µ ∈ R3 includes the length of the pole, the mass

of the pole, and the mass of cart. Unobservable parameters ν ∈ R3 include the

damping at the rotational joint, the friction at the rotational joint, and the friction at

the translational joint.

2. Hopper. Observable parameters µ ∈ R3 include the mass of the thigh and foot and

the length of the shin bodynode. Unobservable parameters ν ∈ R3 include joint

damping of shin and foot joints and ground friction.

3. Walker 2D. Observable parameters µ ∈ R6 include the masses of thigh and foot

for both legs, the mass of pelvis, and the length of shin. Unobservable parameters

ν ∈ R4 include joint damping of foot joints, the delay in observation, and ground

friction.

5.3.3 Zero-shot Transfer with EAPs

In this section, we compare the zero-shot transfer of error-aware policies against two other

baseline algorithms, Domain Randomization (DR) and Universal Policies (UP).

Learning Curves. First, we compare the learning curves of the EAP, DR, and UP ap-

proaches on four selected tasks in Figure Figure 5.4. We set the same ranges of the observ-

able and unobservable parameters for all three algorithms. In our experience, EAPs learn

faster than DR and UP for three tasks, the Hopper, Walker2D, and assistive walking tasks,

while showing comparable performance for the quadrupedal locomotion task. Note that,
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(a) Hopper (b) Walker 2D

(c) Quadrupedal Locomotion (d) Assistive Walking

Figure 5.4: Learning curves for four tasks. The number of samples for EAP include the ones
generated for training an error function.

to make the comparison fair to baselines, we also include the samples for training error

functions (Algorithm algorithm 7) when we evaluate the performance of EAPs. We do not

include the experiment on the CartPole environment for brevity but the EAP outperforms

the baselines as well

Zero-shot Transfer. Then we evaluate the learned policies on unseen validation environ-

ments, where their dynamics parameters µ and ν are sampled from the outside of the

training range. We conduct the experiments for the CartPole, Hopper, Walker2D and

quadrupedal locomotion tasks and compare the normalized average returns (the average

return divided by the maximum return). The results are plotted in Figure Figure 5.5, which

indicate that EAP outperforms DR by 60% to 116% and UP by 12% to 77%. Note that

UP may perform well for the real-world transfer due to the lack of the unobservable pa-

rameters. We also observe that UP is consistently better than DR by being aware of the

dynamics parameters, µ and ν, which meets our expectation.

79



Figure 5.5: Comparison of EAP and baselines DR and UP. The error bars represent the variation
in the average return of the policy in the target environment when trained with 4 different seeds.

Figure 5.6: Average stability region in five test subjects. The results indicate the better
zero-shot transfer of EAP over DR and UP.

For evaluating the zero-shot transfer for the assistive walking task, we define an ad-

ditional metric “stability region”, which depicts the ranges of maximum perturbations in

all directions that can be handled by the human with the EAP-controlled exoskeleton. We

train policies for 10 training human subjects and test the learned policies for 5 new human

subjects. Figure Figure 5.6 compares the average performance of EAP with DR and UP.

The larger area of stability region indicates that EAP significantly outperforms two base-

lines. The ranges of variation for observable and unobservable parameters during training

and testing phases are included in tables Table 5.2 and Table 5.3.

5.3.4 Ablation study

We further analyze the performance of EAPs by conducting a set of ablation studies. We

studied four categories of parameters: choices of observable parameters, reference dynam-

ics, error prediction horizons, and error representations.
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Figure 5.7: Ablation study with choosing different observable parameters asµ. The result indicates
that our approach (EAP) shows more reliable zero-shot transfers for all different scenarios.

Figure 5.8: Ablation study with different reference dynamics. The results indicate that our algo-
rithm is robust against the choice of different references.

Choice of Observable and Unobservable Parameters. We check the robustness of EAPs

by testing with different choices of observable and unobservable parameters. We randomly

split the parameters into µ and ν and test three different splits. Figure Figure 5.7 shows

the stability regions for all three algorithms for three different scenarios. In all cases, EAPs

are more robust than the baseline algorithms.

Choice of Reference Dynamics. In this study, we analyze the effect of choosing three

different reference dynamics P (s′|a, s,µ0,ν0) on the performance of EAP. We randomly

choose three different human agents as the reference dynamics and follow the learning

procedure of EAPs to train three different policies. These policies are then deployed on

the same test subjects along with UP and DR policies. Figure Figure 5.8 shows that all the

EAPs outperforming the baselines by having larger stability regions, although EAPs have
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Figure 5.9: Ablation study with different parameter setting for EAP training.

slightly larger variances.

Horizon of Error Prediction. As we motivated in Section subsection 5.2.3, one step error

might be too subtle to inform the learning of EAPs and we may need T step expansion to

enlarge them. We studied the effect of the error prediction horizon T in Algorithm algo-

rithm 7 by varying its value from T = 1 to T = 8 for the assistive walking task. Figure

Figure 5.9 shows the normalized average return over T gradually changes over the different

values of T and peaks at T = 5. Therefore, we set T = 5 for all the experiments.

The error representation. We also compare the effect of the error representation. Figure

Figure 5.9 also plots the normalized average returns of the unprojected errors (blue) and

projected errors (orange), where projected errors show slightly better performance for all

the different T values.

5.4 Hardware experiments

Although the primary inspiration for developing this algorithm was to enable transfer of

control policies for assistive devices, the proposed zero-shot transfer approach is applicable

to any robot whose dynamics are partial observable due to challenges in measuring certain

parameters. To validate the effectiveness of EAP algorithm on a real robotic system, we use

the popular quadrupedal robot A1 from Unitree [145] robotics, shown in Figure 5.10, as our

testbed. A common, well established, approach while working with real robotic systems
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Figure 5.10: Unitree’s A1 quardupedal robot.

is to first perform a thorough system identification of the robot’s kinematic and dynamic

properties by collecting real world data. However, standard system identification methods

fail when a robot is tested in an environment from which no prior data was available. For

example, when data is collected on regular ground but the robot is tested on a ground with

different contact parameters such as a soft foam mat, the resulting variation in dynamics is

not captured by the identified parameters. As a result, control policies trained in simulation

fail when tested on a novel environment in the real world. Using EAP, we demonstrate that

a policy trained using our approach is able to overcome differences in the environments it

is being tested in. We take the following approach to illustrate this :

1. We first perform a system identification of A1 robot parameters using data collected

over carpeted ground.

2. Then we define two tasks for the quadrupedal robot - In-place walking and walking

forward. For each of these tasks, we define a set of observable and unobservable

parameters and train EAP along with policies using baseline algorithms - UP and

DR.

3. We compare the performance of each of these policies on three novel environments

from which no data for system identification was collected. First environment uses a

soft foam mat as ground. Second, we add an additional unknown mass to the robot’s
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torso. Third, we test the robot with additional mass using soft foam mat as ground.

5.4.1 Data collection, simulation environment and system identification

Data collection

The A1 robot is controlled using a position command which is converted into torques using

a simple PD-controller. It is equipped with joint angle sensors, Inertial-Measurement Unit

(IMU) and a foot contact sensor. Using the joint angle sensors we compute both joint angle

and joint velocities. We can also compute the robots torso’s orientation and rate of change

of orientation using the IMU sensor.

The data collection process on the real A1 robot involves generating two kinds of data:

1. We first suspend the robot in air, thus removing ground contact forces being applied

to the robot, and apply a variety of sinusoidal and step commands to the robot. During

this process, we make sure that the robots torso remains fixed as much as possible.

We collect joint position and velocity responses from the robot.

2. Next, we script simple sinusoidal commands with different frequencies and ampli-

tudes that the robot legs can follow while being in contact with the ground (Note, we

stick to simple commands because it is challenging to script commands for the robot

in contact with the ground while ensuring safety). We collect joint position, velocities

, the torso’s orientation , angular velocity (computed using simple finite-difference

method).

We collect 60 trajectories on the robot each of length 10 seconds. The sensors are

sampled at 30 Hz, which gives us a total of 60, 000 data points. These form dataset D ,

each trajectory τ is consists of the command sent to the robot a and the state of the robot s

(which includes the joint positions,velocities, torso position and orientation) for length of

time T .
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D = {(τ1, ), (τ2)..(τn)}

τi = {(s1, a1), (s2, a2)...(sT , aT )}

Simulation environment and system identification

We use DART physics engines [134] to simulate the robot. In total, the robot has 18

degrees of freedom, 12 controllable joints of the legs and 6 free degrees of freedom of

the torso. The simulation runs at 500 Hz, however we use a control frequency of 20 Hz.

In simulation, we enforce a torque limit of 30 N/m based on the torque capabilities of

the real robot. In our experiments with the real robot, we measured a sensor delay of 20-

30 ms, we incorporate this sensor delay into our simulation framework as well. The feet

of A1 robot are made from deformable rubber material which acts like a spring-damper

when there is contact, to model this interaction we use hunt-crossley contact model [146,

147]. Hunt-crossley model comprises of parameters such as stiffness and friction which

allows us to control the softness of the contact. To identify a simulation model from real

world data, we choose 8 dynamical parameters : The proportional and derivative gains of

the low-level controller Kp,Kd on the robot. DART also allows us to write custom low-

level controllers (such as PD controllers), which enables users to design these controllers

to compute the torques. Since, the PD controller gains affect the dynamic response of the

robot joint legs, we include these parameters as optimization variables. We also include

joint damping β, contact stiffness κ, ground friction γ, mass of torso mtorso, mass of

thigh linkmthigh and mass of the calf linkmcalf . This makes the vector containing these

variables η ∈ R8.

η = {Kp,Kd, β, κ, γ,mtorso,mthigh,mcalf} (5.5)

For optimization, we use Covariance Matrix Adaptation (CMA-ES) [148] method to
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Table 5.4: Tasks and Network Architectures on the real robot

Task Observable Params. µ Unobservable Params. ν Net. Arch. Err. Dim. |ep|
In-Place Walking PD-gains, link masses joint damping, contact params , delay (64,64,64) 6
Walking forward PD gains, link masses sensor delay, joint damping, contact params (64,64,64) 6
Walking forward w unknown mass PD-gains joint damping, delay, torso mass (64,64,64) 6

find the best set of parameter values in simulation that matches real world trajectories by

minimizing the cost function described in Equation 5.6.

J =
1

N
min
η

N∑∑∑
n=1

T∑∑∑
t=0

||s′t− st||2 (5.6)

Where st is the states collected in real world and s′t are the states observed in simulation.

The cost function minimizes the average error generated by N state trajectories each of T

time steps in simulation when compared to real world data when the same actions are

applied to both. Once the optimized parameters are obtained, we use this as the base

environment in simulation.

5.5 In-place walking

We define an in-place walking task for a quadrupedal robot in which the center of mass of

the robot remains in the same place while the legs follow a walking motion. Inspired by the

lower level control framework presented in [149], we first define a end-effector reference

trajectory for each leg and our action space is defined as delta end-effector cartesian posi-

tions from the pre-defined reference trajectory. We then use analytical inverse kinematics

to compute the corresponding joint angles for each leg. For in-place walking, since there is

no movement in the x-y plane of the robot, the reference trajectory only consists of motion

in the z-axis which is perpendicular to the ground. The reference trajectory is defined in

the equation below, where A is the amplitude, f is the frequency and t is the time. When

the cartesian z is below zero or the ground plane the value just remains zero.

86



z =


Asin(2πft), if z ≥ 0

0, otherwise

The action space is 12-dimensional (R12) which comprises of residual cartesian position

for each leg end-effector (R3). So, the output of the neural network policy is added to the

reference trajectory to compute the target leg positions. The state space consists of the

angular velocity of torso R3 computed using the gyroscope. The angular position R3 of

torso, joint angles R12 and binary foot contact information for each leg which indicates if

the foot is in contact or not R4. An additional phase variable φ(t) is included as part of the

state to indicate the phase of the gait cycle the robot is in. In total, the state vector is 23

dimensional R23. The reward function , described in Equation 5.7 encourages the policy

to generate actions that penalizes center of mass velocity of the robot while following the

reference trajectory q̄ of the end-effector of each leg.

r(s, a) = w1e
−k1∗(q−q̄) + w2e

−k2∗(ċ) − w3||a||2 (5.7)

Where w1 = 0.5, w2 = 0.5 , k1 = 20, k2 = 10 and w3 = 1e−3 During training, we

consider the PD-gains , the mass of the robot links as observable parameters µ. In our

preliminary experiments, we found that for simple tasks, these quantities can be identified

by standard system identification procedures. However, quantities like joint damping, sen-

sor delays and ground contact parameters are considered unobservable parameters ν. We

train EAP, UP and DR with these parameters as the set of observable and unobservable

quantities.

The neural network policy is represented as a multi-layered perceptron (MLP) with

three hidden layers of 64 neurons each. The error function is trained with a horizon length

of five T = 5 and the projected error dimension is six R6.
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5.6 Walking forward

In this task, we train a policy to walk forward at a certain velocity while maintaining the

yaw orientation. The framework for training the policy is similar to in-place walking task.

A pre-defined reference trajectory is defined for each leg end-effector and a neural network

policy outputs delta cartesian positions for each leg. The reference trajectories are defined

as follows :

z =


Asin(2πft− π

2
), if z ≥ 0

0, otherwise

x = Asin(2πft), y = 0

The reward function encourage forward walking at a velocity of v = 0.6m/s while en-

suring that the end-effectors follow the pre-defined reference trajectory. The reward func-

tion also encourages the policy to walk in a straight path by penalizing the yaw orientation

ψ.

r(s, a) = w1e
−k1∗(q−q̄) + w2e

−k2∗ψ + min(ẋ, 0.6)− w3||a||2 (5.8)

Where w1 = 0.5,k1 = 20, w2 = 0.6, k2 = 10 and w3 = 1e−3. The state space, action

space, observed, unobserved parameters and test environment remains the same as in-place

walking task. The parameters of the policy and the error function remains the same as the

previous task as well.

5.7 Evaluation on real robot

We test policies on five environments : A training environment and four test environments.

1. Base training environment : The same environment from which data for system iden-

88



tification was collected (robot moving on carpeted ground).

2. Foam mat environment (T1): The robot is deployed on a soft foam mat with different

contact parameters than over ground.

3. Additional mass environment (T2): Additional unknown mass is added to the robot’s

torso.

4. Foam mat with additional mass environment (T3): Robot is tested with additional

mass and deployed over a foam mat.

Owing to the difficulty in computing the rewards in the real world. We use a surrogate

metric to evaluate the policies in the real world. For in-place walking task, we collect the

joint angles when the policy is being deployed and compare how well the joint angles track

the reference trajectory. This quantity is computed using the term w1e
−k1∗(q−q̄) in equation

Equation 5.7. For walking forward task, we just use the straight line distance travelled by

the robot as the surrogate metric, this is measured using a simple measuring tape.

Performance in base training environment

In the base training environment we notice that for both in-place walking as well as walk-

ing forward task all methods (EAP,DR and UP) show similar performance. The results are

illustrated in Figure 5.12a and Figure 5.12b where the task performance for the base envi-

ronment is similar. This corroborates with findings of prior work [150] which suggested

that for simple tasks, carefully randomizing parameters is sufficient for sim-2-real transfer

for quadrupedal robots. Since, the policies are being tested in the environment from which

data for system identification was collected, the policies are able to transfer well.

Performance in test environments

In our first test environment (T1), we change the surface on which the robot performs the

task, with the aim of changing the contact parameter values. The differences in the contact
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Figure 5.11: Comparison of contact profile generated by ground and soft foam mat

profile generated by the two surfaces is illustrated in figure Figure 5.11. We notice that for

in-place walking task, all methods perform similarly Figure 5.12a. However, in the walking

forward task Figure 5.12b, EAP beats both the baselines DR and UP by walking forward

for a longer straight-line distance on the mat with an average of 2.3m whereas both DR and

UP move less than 2m. We notice that both DR and UP tend to change the yaw-orientation

of the robot, which is not a desired behaviour.

In test environment 2 (T2), we attach a mass of 7.5 lbs (unknown to the policy parame-

ters) to the robot’s torso. In this environment, the ability for EAP to adapt is best illustrated,

beating both baselines DR and UP in straight line distance travelled on carpeted ground.

With EAP the robot moves an average distance of 1.7m , UP and DR manage close 1m.

Results illustrated in Figure 5.12b.

The performance of the policies in test environment 3 (T3) are similar to that of T2 with

EAP managing to travel the furthest distance compared to baselines DR and UP.

5.8 Conclusion

We presented a novel approach to train an error-aware policy (EAP) that transfers effec-

tively to unseen target environments in a zero-shot manner. Our method learns an EAP

for an assistive wearable device to help a human recover balance after an external push is

applied. We show that a single trained EAP is able to assist different human agents with
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(a) In-place walking task (b) Walking forward task

Figure 5.12: Evaluation of real world results.

unseen biomechanical characteristics. We also validate our approach by comparing EAP to

common baselines like Universal Policy and Domain randomization to show our hypothe-

sis that a policy which explicitly takes future state error as input can enable better decision

making. Our approach outperforms the baselines in all the tasks. We also evaluated the

performance of our algorithm through a series of ablation studies that sheds some light on

the importance of parameters such as error horizon length, error representation, choice of

observable parameters and choice of reference dynamics. We find that EAP is not sensitive

to either the choice of observable parameters or the reference dynamics, and outperforms

the baselines with variations in these quantities as well. Further, we validated the ability of

EAP to transfer to real world scenario using A1 quadrupedal robot. The preliminary results

presented for simple tasks such as in-place walking and walking forward shows promise of

applying the proposed approach to real world scenarios.

Our work has a few limitations. At the core, our algorithm relies on the error function

to make predictions of the expected state errors. The accuracy of this prediction can be

improved by better function approximators such as recurrent neural networks (RNN) that

takes a history of states as input, we leave this for future work.
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CHAPTER 6

CONCLUSION AND FUTURE WORK

In conclusion, we presented of a set of learning based algorithms that address the important

challenge of safety in bipedal locomotion. Our contributions are along two closely related

directions 1) Fall prevention and safe falling for bipedal robots and 2) Fall prevention for

humans during walking using assistive devices. With bipedal robots, we showed the ef-

fectiveness of reinforcement learning (RL) based approaches to learn control policies that

demonstrate a wide range of falling and balancing strategies. Our algorithmic contributions

also included improving efficiency of learning by incorporating abstract dynamical models

as priors, curriculum learning, imitation learning and a novel method of building a graph of

policies into the standard RL framework. In the chapters 4 and 5 of the thesis, we shifted

focus towards an important healthcare related topic of fall prevention for humans using as-

sistive devices. To this end, our contributions include using imitation learning approach to

create virtual human walking agents whose bio-mechanical gait characteristics are similar

to real world humans. Using these simulated agents we showed that, assistive devices could

indeed help prevent falls when pushed whereas human agents without assistants fail. Fi-

nally, since humans exhibit a wide range of variations in gait characteristics, we developed

a novel algorithm to enable zero-shot generalization of fall prevention policies when tested

on new human subjects. Although inspired by assistive devices, the algorithm is applicable

for any robotic system and we validated the proposed approach on a real world quadrupedal

A1 robot.

6.1 Safe locomotion for bipedal robots

In chapter 3, we developed an algorithm to generate safe falling motion for a bipedal robot.

Unlike steady state walking, which is periodic in nature, optimizing for a falling motion is
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challenging because it involves reasoning about discrete contact sequence planning (which

body part should hit the ground and in what sequence) as well a continuous joint motion to

minimize impact upon ground contact. We showed that we could solve this problem using

an offline policy learning algorithm. Our approach significantly improved on the computa-

tion time required by prior dynamic programming methods while also ensuring that a wide

variety of falling strategies naturally emerge from the algorithm. Towards the same goal

of safety for bipedal locomotion, inspired by strategies humans use to recover balance as

a response to external pushes, in our second work we presented a training methodology

for a control policy which learns residual control signals to those generated by traditional

model-based controllers to maintain balance. By learning residual control signals, we not

just simplify learning the task because the model-based controllers act as strong priors, but

also improve upon methods that use either just model-based or naive RL approaches. Our

algorithm also included a novel sampling method that adaptively adjusts the difficulty in

training samples to encourage efficient learning. By doing so, we achieved better perfor-

mance at a lower sample cost compared to baseline naive RL approach.

We also addressed the common issue of sample inefficiency while solving complex

task such as locomotion with model free reinforcement learning algorithms. RL has shown

promising results in learning complex motor skills in high dimensional systems, however

the control policies typically perform well only from a small set of initial states and take

millions of samples to complete the task. In the final section of chapter 3, we take a divide

and conquer approach to solve this by breaking down a complex task into multiple sub-tasks

and learn a directed-graph of control policies to achieve the same task but by consuming

less samples. The edges of our directed graph contains policies and the nodes contain state

distributions, so a policy can take the robotic system from the one set of states to another

set of goal states via rolling out policy/policies. Starting from the first policy that attempts

to achieve the task from a small set of initial states, the algorithm automatically discovers

the next subtask with increasingly more difficult initial states until the last subtask matches
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the initial state distribution of the original task. We showed that our approach takes lesser

samples than common baselines such as naive RL, curriculum learning, manually generated

sub-tasks while ensuring that the task can be completed from a wider range of initial states.

Future work

The limitation with our work on push recovery, be it either fall prevention or safe falling, is

that the control policies work best when the robot’s initial center of mass velocity is close

to zero when pushed. However, in real world scenarios the ability to recover when the

robot’s motion is more dynamic, such as walking or running, would be crucial to ensure

safety under all circumstances. Developing algorithms that can ensure safety for a wider

range of scenarios would be an interesting extension to our work.

6.2 Fall prevention using assistive devices

In chapter 4, we shifted our focus towards learning fall prevention control policies for assis-

tive devices. We developed an approach to automate the process of augmenting an assistive

walking device with the ability to prevent falls. Our method has three key components :

A human walking policy, fall predictor and a recovery policy. In a simulated environment

we showed that an assistive device can indeed help recover balance from a wider range of

external perturbations. We introduced stability region as a quantitative metric to show the

benefit of using a recovery policy, larger area of stability region would imply better recov-

ery motion. In addition to this, stability region can also be used to analyze different sensor

and actuator design choices for an assistive device. We evaluated the stability region of six

different policies using various sensor and actuator configurations to shed some light on

appropriate design choices to help develop effective assistive devices.

A significant bottleneck in making assistive devices more ubiquitous in society is due

to the fact that humans exhibit remarkable variations in gait characteristics, making design

of control policies that generalize for a large population extremely challenging. A common
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approach has been to tune controllers for each individual user, however this can be tedious

and a time consuming process. We addressed this issue by viewing it through the lens of

transfer learning problem. We developed a novel algorithm that enables a policy to transfer

in a zero-shot manner for partially observed dynamical systems like humans. Our work

introduces an Error-aware policy (EAP) which explicitly takes as input a predicted state

error generated in the target environment to produce a corrected action that successfully

completes the task. We show that a single trained EAP is able to assist different human

agents with unseen biomechanical characteristics. We also validate our approach by com-

paring EAP to common baselines like Universal Policy (UP) and Domain randomization

(DR) to show our hypothesis that a policy which explicitly takes future state error as input

can enable better decision making. Our approach outperforms the baselines in all the tasks.

We also evaluated the performance of our algorithm on a real world quadrupedal robot,

which strengthens the case for applicability of EAP on a real system. We show that for

tasks such as walking forward, EAP is able to outperform baselines such as DR and UP

when tested on novel environments with unique ground contact characteristics.

Future work

A key component of our work with assistive devices is virtual human walking agent. Sim-

ulated agents that generate bio-mechanically accurate motion [151, 152, 153] can play a

crucial role in not just improving our understanding of human motion but also help in de-

veloping better assistive and rehabilitation strategies for people with disability. Algorithms

that can generate such human-like motion for not just periodic steady state walking gaits,

but for more dynamic motion such as running, push-recovery, slip/ trip recovery can be a

very exciting research direction. Incorporating musculo-tendon human models could also

be a contributing factor in closing the gap between real world and simulated human agents.

The major bottleneck for such applications is the shortage of real-world data for validation

purposes, recent advancements in machine learning methods to learn from limited data as
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well as a collaborative efforts between researchers working in bio-mechanics and machine

learning can help overcome some of these challenges.

In this work, our primary contributions have been on developing control policies for

robots, however in the spirit of the famous phrase ”form follows function”, co-optimization

of robot design along with policy learning can be a powerful approach to create functional

robots in the future. In chapter 4, we provided some preliminary results by shedding light

on the best sensor and actuator design choices for assistive devices based on the policy’s

performance. Extending this to optimize for robot structural design can be an interesting

direction.

Another closely related topic to our work with assistive devices is modelling human-

robot interaction. In our current, work we assume that the human perfectly adapts to the

forces applied by the exoskeleton. However, in reality this does not necessarily hold true.

Better predictive modelling of the interaction between the robot and the human is a promis-

ing research direction. Modelling human intention while collaborating with a robot could

also be key towards wide-spread use of these robots. Contributions in this area can have

a lasting impact not just with assistive devices but also numerous other applications such

as human-robot collaboration in a factory setting, self-driving cars and robots that are built

for home environments.

As highlighted in Chapter 5, sim-2-real transfer of policies has gained a lot of interest

in the research community. However, the primary focus from researchers has been through

the lens of algorithmic contributions, an exciting future direction will be to develop meth-

ods that improves simulation environments by bringing them closer to reality. This could

be done through leveraging machine learning methods to improve contact models, focusing

efforts on differentiable simulators to enable end-to-end learning or by improving compu-

tational efficiency of more traditional methods such as finite-element methods (FEM) to

improve accuracy of simulation, especially for deformable bodies.
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