46 research outputs found

    Learning the Roots of Visual Domain Shift

    Get PDF
    In this paper we focus on the spatial nature of visual domain shift, attempting to learn where domain adaptation originates in each given image of the source and target set. We borrow concepts and techniques from the CNN visualization literature, and learn domainnes maps able to localize the degree of domain specificity in images. We derive from these maps features related to different domainnes levels, and we show that by considering them as a preprocessing step for a domain adaptation algorithm, the final classification performance is strongly improved. Combined with the whole image representation, these features provide state of the art results on the Office dataset.Comment: Extended Abstrac

    SANet: Structure-Aware Network for Visual Tracking

    Full text link
    Convolutional neural network (CNN) has drawn increasing interest in visual tracking owing to its powerfulness in feature extraction. Most existing CNN-based trackers treat tracking as a classification problem. However, these trackers are sensitive to similar distractors because their CNN models mainly focus on inter-class classification. To address this problem, we use self-structure information of object to distinguish it from distractors. Specifically, we utilize recurrent neural network (RNN) to model object structure, and incorporate it into CNN to improve its robustness to similar distractors. Considering that convolutional layers in different levels characterize the object from different perspectives, we use multiple RNNs to model object structure in different levels respectively. Extensive experiments on three benchmarks, OTB100, TC-128 and VOT2015, show that the proposed algorithm outperforms other methods. Code is released at http://www.dabi.temple.edu/~hbling/code/SANet/SANet.html.Comment: In CVPR Deep Vision Workshop, 201

    Transfer learning through greedy subset selection

    Get PDF
    We study the binary transfer learning problem, focusing on how to select sources from a large pool and how to combine them to yield a good performance on a target task. In particular, we consider the transfer learning setting where one does not have direct access to the source data, but rather employs the source hypotheses trained from them. Building on the literature on the best subset selection problem, we propose an efficient algorithm that selects relevant source hypotheses and feature dimensions simultaneously. On three computer vision datasets we achieve state-of-the-art results, substantially outperforming transfer learning and popular feature selection baselines in a small-sample setting. Also, we theoretically prove that, under reasonable assumptions on the source hypotheses, our algorithm can learn effectively from few examples

    Return of Frustratingly Easy Domain Adaptation

    Full text link
    Unlike human learning, machine learning often fails to handle changes between training (source) and test (target) input distributions. Such domain shifts, common in practical scenarios, severely damage the performance of conventional machine learning methods. Supervised domain adaptation methods have been proposed for the case when the target data have labels, including some that perform very well despite being "frustratingly easy" to implement. However, in practice, the target domain is often unlabeled, requiring unsupervised adaptation. We propose a simple, effective, and efficient method for unsupervised domain adaptation called CORrelation ALignment (CORAL). CORAL minimizes domain shift by aligning the second-order statistics of source and target distributions, without requiring any target labels. Even though it is extraordinarily simple--it can be implemented in four lines of Matlab code--CORAL performs remarkably well in extensive evaluations on standard benchmark datasets.Comment: Fixed typos. Full paper to appear in AAAI-16. Extended Abstract of the full paper to appear in TASK-CV 2015 worksho
    corecore