Unlike human learning, machine learning often fails to handle changes between
training (source) and test (target) input distributions. Such domain shifts,
common in practical scenarios, severely damage the performance of conventional
machine learning methods. Supervised domain adaptation methods have been
proposed for the case when the target data have labels, including some that
perform very well despite being "frustratingly easy" to implement. However, in
practice, the target domain is often unlabeled, requiring unsupervised
adaptation. We propose a simple, effective, and efficient method for
unsupervised domain adaptation called CORrelation ALignment (CORAL). CORAL
minimizes domain shift by aligning the second-order statistics of source and
target distributions, without requiring any target labels. Even though it is
extraordinarily simple--it can be implemented in four lines of Matlab
code--CORAL performs remarkably well in extensive evaluations on standard
benchmark datasets.Comment: Fixed typos. Full paper to appear in AAAI-16. Extended Abstract of
the full paper to appear in TASK-CV 2015 worksho