10 research outputs found

    Domain Adaptation For Vehicle Detection In Traffic Surveillance Images From Daytime To Nighttime

    Get PDF
    Vehicle detection in traffic surveillance images is an important approach to obtain vehicle data and rich traffic flow parameters. Recently, deep learning based methods have been widely used in vehicle detection with high accuracy and efficiency. However, deep learning based methods require a large number of manually labeled ground truths (bounding box of each vehicle in each image) to train the Convolutional Neural Networks (CNN). In the modern urban surveillance cameras, there are already many manually labeled ground truths in daytime images for training CNN, while there are little or much less manually labeled ground truths in nighttime images. In this paper, we focus on the research to make maximum usage of labeled daytime images (Source Domain) to help the vehicle detection in unlabeled nighttime images (Target Domain). For this purpose, we propose a new method based on Faster R-CNN with Domain Adaptation (DA) to improve the vehicle detection at nighttime. With the assistance of DA, the domain distribution discrepancy of Source and Target Domains is reduced. We collected a new dataset of 2,200 traffic images (1,200 for daytime and 1,000 for nighttime) of 57,059 vehicles for training and testing CNN. In the experiment, only using the manually labeled ground truths of daytime data, Faster R- CNN obtained 82.84% as F-measure on the nighttime vehicle detection, while the proposed method (Faster R-CNN+DA) achieved 86.39% as F-measure on the nighttime vehicle detection

    Invariant deep compressible covariance pooling for aerial scene categorization

    Get PDF
    Learning discriminative and invariant feature representation is the key to visual image categorization. In this article, we propose a novel invariant deep compressible covariance pooling (IDCCP) to solve nuisance variations in aerial scene categorization. We consider transforming the input image according to a finite transformation group that consists of multiple confounding orthogonal matrices, such as the D4 group. Then, we adopt a Siamese-style network to transfer the group structure to the representation space, where we can derive a trivial representation that is invariant under the group action. The linear classifier trained with trivial representation will also be possessed with invariance. To further improve the discriminative power of representation, we extend the representation to the tensor space while imposing orthogonal constraints on the transformation matrix to effectively reduce feature dimensions. We conduct extensive experiments on the publicly released aerial scene image data sets and demonstrate the superiority of this method compared with state-of-the-art methods. In particular, with using ResNet architecture, our IDCCP model can reduce the dimension of the tensor representation by about 98% without sacrificing accuracy (i.e., <0.5%)

    Deep invariant feature learning for remote sensing scene classification

    Get PDF
    Image classification, as the core task in the computer vision field, has proceeded at a break­neck pace. It largely attributes to the recent growth of deep learning techniques which have blown the conventional statistical methods on a plethora of benchmarks and even can outperform humans in specific image classification tasks. Despite deep learning exceeding alternative techniques, they have many apparent disadvantages that prevent them from being deployed for the general-purpose. Specifically, deep learning always requires a considerable amount of well-annotated data to circumvent the problems of over-fitting and the lacking of prior knowledge. However, manually labelled data is expensive to acquire and is impossible to incorporate the variations as much as the real world. Consequently, deep learning models usually fail when they confront with the underrepresented variations in the training data. This is the main reason why the deep learning model is barely satisfactory in the challeng­ing image recognition task that contains nuisance variations such as, Remote Sensing Scene Classification (RSSC). The classification of remote sensing scene image is a procedure of assigning the seman­tic meaning labels for the given satellite images that contain the complicated variations, such as texture and appearances. The algorithms for effectively understanding and recognising remote sensing scene images have the potential to be employed in a broad range of applications, such as urban planning, Land Use and Land Cover (LULC) determination, natural hazards detection, vegetation mapping, environmental monitoring. This inspires us to de­sign the frameworks that can automatically predict the precise label for satellite images. In our research project, we mine and define the challenges in RSSC community compared with general scene image recognition tasks. Specifically, we summarise the problems into the following perspectives. 1) Visual-semantic ambiguity: the discrepancy between visual features and semantic concepts; 2) Variations: the intra-class diversity and inter-class similarity; 3) Clutter background; 4) The small size of the training set; 5) Unsatisfactory classification accuracy in large-scale datasets. To address the aforementioned challenges, we explore a way to dynamically expand the capabilities of incorporating the prior knowledge by transforming the input data so that we can learn the globally invariant second-order features from the transformed data for improving the performance of RSSC tasks. First, we devise a recurrent transformer network (RTN) to progressively discover the discriminative regions of input images and learn the corresponding second-order features. The model is optimised using pairwise ranking loss to achieve localising discriminative parts and learning the corresponding features in a mutu­ally reinforced way. Second, we observed that existing remote sensing image datasets lack the provision of ontological structures. Therefore, a multi-granularity canonical appearance pooling (MG-CAP) model is proposed to automatically seek the implied hierarchical structures of datasets and produced covariance features contained the multi-grained information. Third, we explore a way to improve the discriminative power of the second-order features. To accomplish this target, we present a covariance feature embedding (CFE) model to im­prove the distinctive power of covariance pooling by using suitable matrix normalisation methods and a low-norm cosine similarity loss to accurately metric the distances of high­dimensional features. Finally, we improved the performance of RSSC while using fewer model parameters. An invariant deep compressible covariance pooling (IDCCP) model is presented to boost the classification accuracy for RSSC tasks. Meanwhile, we proofed the generalisability of our IDCCP model using group theory and manifold optimisation techniques. All of the proposed frameworks allow being optimised in an end-to-end manner and are well-supported by GPU acceleration. We conduct extensive experiments on the well-known remote sensing scene image datasets to demonstrate the great promotions of our proposed methods in comparison with state-of-the-art approaches

    Deep learning for land cover and land use classification

    Get PDF
    Recent advances in sensor technologies have witnessed a vast amount of very fine spatial resolution (VFSR) remotely sensed imagery being collected on a daily basis. These VFSR images present fine spatial details that are spectrally and spatially complicated, thus posing huge challenges in automatic land cover (LC) and land use (LU) classification. Deep learning reignited the pursuit of artificial intelligence towards a general purpose machine to be able to perform any human-related tasks in an automated fashion. This is largely driven by the wave of excitement in deep machine learning to model the high-level abstractions through hierarchical feature representations without human-designed features or rules, which demonstrates great potential in identifying and characterising LC and LU patterns from VFSR imagery. In this thesis, a set of novel deep learning methods are developed for LC and LU image classification based on the deep convolutional neural networks (CNN) as an example. Several difficulties, however, are encountered when trying to apply the standard pixel-wise CNN for LC and LU classification using VFSR images, including geometric distortions, boundary uncertainties and huge computational redundancy. These technical challenges for LC classification were solved either using rule-based decision fusion or through uncertainty modelling using rough set theory. For land use, an object-based CNN method was proposed, in which each segmented object (a group of homogeneous pixels) was sampled and predicted by CNN with both within-object and between-object information. LU was, thus, classified with high accuracy and efficiency. Both LC and LU formulate a hierarchical ontology at the same geographical space, and such representations are modelled by their joint distribution, in which LC and LU are classified simultaneously through iteration. These developed deep learning techniques achieved by far the highest classification accuracy for both LC and LU, up to around 90% accuracy, about 5% higher than the existing deep learning methods, and 10% greater than traditional pixel-based and object-based approaches. This research made a significant contribution in LC and LU classification through deep learning based innovations, and has great potential utility in a wide range of geospatial applications

    Domain Adaptation Network for Cross-Scene Classification

    No full text
    corecore