119 research outputs found

    Hybridization of multi-objective deterministic particle swarm with derivative-free local searches

    Get PDF
    The paper presents a multi-objective derivative-free and deterministic global/local hybrid algorithm for the efficient and effective solution of simulation-based design optimization (SBDO) problems. The objective is to show how the hybridization of two multi-objective derivative-free global and local algorithms achieves better performance than the separate use of the two algorithms in solving specific SBDO problems for hull-form design. The proposed method belongs to the class of memetic algorithms, where the global exploration capability of multi-objective deterministic particle swarm optimization is enriched by exploiting the local search accuracy of a derivative-free multi-objective line-search method. To the authors best knowledge, studies are still limited on memetic, multi-objective, deterministic, derivative-free, and evolutionary algorithms for an effective and efficient solution of SBDO for hull-form design. The proposed formulation manages global and local searches based on the hypervolume metric. The hybridization scheme uses two parameters to control the local search activation and the number of function calls used by the local algorithm. The most promising values of these parameters were identified using forty analytical tests representative of the SBDO problem of interest. The resulting hybrid algorithm was finally applied to two SBDO problems for hull-form design. For both analytical tests and SBDO problems, the hybrid method achieves better performance than its global and local counterparts

    Design-space assessment and dimensionality reduction: An off-line method for shape reparameterization in simulation-based optimization

    Get PDF
    A method based on the Karhunen–Loève expansion (KLE) is formulated for the assessment of arbitrary design spaces in shape optimization, assessing the shape modification variability and providing the definition of a reduced-dimensionality global model of the shape modification vector. The method is based on the concept of geometric variance and does not require design-performance analyses. Specifically, the KLE is applied to the continuous shape modification vector, requiring the solution of a Fredholm integral equation of the second kind. Once the equation is discretized, the problem reduces to the principal component analysis (PCA) of discrete geometrical data. The objective of the present work is to demonstrate how this method can be used to (a) assess different design spaces and shape parameterization methods before optimization is performed and without the need of running simulations for the performance prediction, and (b) reduce the dimensionality of the design space, providing a shape reparameterization using KLE/PCA eigenvalues and eigenmodes. A demonstration for the hull-form optimization of the DTMB 5415 model in calm water is shown, where three design spaces are investigated, namely provided by free-form deformation, radial basis functions, and global modification functions

    Structural optimization in steel structures, algorithms and applications

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    5th EUROMECH nonlinear dynamics conference, August 7-12, 2005 Eindhoven : book of abstracts

    Get PDF

    5th EUROMECH nonlinear dynamics conference, August 7-12, 2005 Eindhoven : book of abstracts

    Get PDF

    An agent-based model for the sustainable management of navigation activities in the Saint Lawrence Estuary

    Get PDF
    Natural resource managers of protected areas are concerned with the management of human activities potentially harmful to ecosystems’ health and/or integrity. These systems where human interact with natural resources are called social-ecological systems (SES) and possess the characteristics of complex adaptive systems (e.g. co-evolution). The SES of navigation activities and whales interacting within the Saguenay–St. Lawrence Marine Park (SSLMP) and the projected St. Lawrence Estuary Marine Protected Area in Quebec, Canada, has been investigated and modelled using the agent-based modelling (ABM) technology: The resulting Marine Mammal and Maritime Traffic Simulator (3MTSim) is designed to support marine protected area managers in their effort to reduce the frequency and intensity of boat-whale co-occurrences within the St Lawrence Estuary and mitigate the risks of vessel strikes. This dissertation presents the building process of the 3MTSim’s boat ABM. The knowledge extracted from analyses of gathered and collected data relative to all forms of sailing and motorized navigation supported the decision to first focus on the modelling of commercial excursions (including whale-watching trips), cargo ships, and cruise liners. Data analyses allowed, for the first time, to draw a comprehensive portrait of navigation activities throughout the region where whales congregate in great numbers during the summer season. Among others, a quantitative analysis led to an accurate estimate of the total navigation time within each separate ecosystem of the region. This study identified areas intensively used by maritime traffic such as the mouth of the Saguenay River and offshore Les Escoumins. Several field campaigns carried out in the context of this project allowed to link some undesirable collective patterns of whale-watching excursions (regarding both whale conservation and SSLMP visitors’ experience) with contextual factors including whale species’ abundance and distribution, management gaps, and companies and captains’ decisions. The bounded rationality framework was chosen to investigate captains’ decision making and more generally the dynamics of the whole whale-watching SES. A portrait of the decision strategies followed by whale-watching captains has been drawn. The results will lead to a set of recommendations regarding the sustainable management of whale-watching excursions in and around the SSLMP. Results from field investigations and data analyses have fed the model building process, including an explicit representation of the whale-watching captains’ decision making. Data analyses revealed that cargo ships and ocean liners tend to follow predictable routes with low variability. Consequently, a complex behavioural modelling approach was deemed unnecessary in favour of a statistical approach, justified by the large volume of high-quality historical data available for both components. The pattern-oriented modelling approach proved appropriate for selecting a valid model of whale-watching excursions. Model simulations confirmed that whale-watching captains do favour the observation of a few rare rorqual species (e.g. humpback whales), leaving aside the most abundant one, namely the minke whales. Therefore, 3MTSim was run to quantify the impact that whale-watching captains changing their decision strategy could have on both whale exposure to boats (conservation concern) and excursion content (commercial concern). It was found that captains willing to avoid crowded observation sites and/or seeking to increase the diversity of species observed could have statistically significant benefits regarding conservation issues without affecting important features of their excursions. Finally, the convincing performance of the 3MTSim’s boat ABM ensures its safe use as a decision-support tool for management insofar as model limitations are understood and accounted for in the results and discussion
    • …
    corecore