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• O�-line methods allow for the assessment and dimensionality reduction of design spaces before shape opti-
mization is performed.

• KLE/PCA based methods provide with a reparameterization of the shape modi�cation vector for e�cient
optimization.

• The proposed method can be used with arbitrary shape parameterization/modi�cation methods.

• Examples are given for the DTMB 5415 hull form optimization, using free-form deformation, radial basis
functions, and global modi�cation functions.
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ABSTRACT

A method based on the Karhunen-Loève expansion (KLE) is formulated for the assess-
ment of arbitrary design spaces in shape optimization, assessing the shape modi�cation
variability and providing the de�nition of a reduced-dimensionality global model of the
shape modi�cation vector. The method is based on the concept of geometric variance
and does not require design-performance analyses. Speci�cally, the KLE is applied to
the continuous shape modi�cation vector, requiring the solution of a Fredholm integral
equation of the second kind. Once the equation is discretized, the problem reduces to
the principal component analysis (PCA) of discrete geometrical data. The objective of
the present work is to demonstrate how this method can be used to (a) assess di�erent
design spaces and shape parameterization methods before optimization is performed
and without the need of running simulations for the performance prediction, and (b)
reduce the dimensionality of the design space, providing a shape reparameterization
using KLE/PCA eigenvalues and eigenmodes. A demonstration for the hull-form opti-
mization of the DTMB 5415 model in calm water is shown, where three design spaces
are investigated, namely provided by free-form deformation, radial basis functions, and
global modi�cation functions of the hull.

1. Introduction

The simulation-based design (SBD) paradigm has
demonstrated the capability of supporting ship design-
ers and marine/ocean engineers, not only providing
large sets of design options but also exploring opera-
tional spaces by assessing the design performance for
a large number of operating and environmental con-
ditions. The recent development of high performance
computing (HPC) systems has driven the SBD towards
integration with global optimization (GO) algorithms
and uncertainty quanti�cation (UQ) methods, moving
the SBD paradigm to automatic deterministic and stochas-
tic SBD optimization (SBDO, Campana et al. 2006;
Diez et al. 2018b,c) and simulation-driven (SDD, Har-
ries and Abt 2019) formulations, possibly aiming at
global solutions to the design problem. In shape design,
SBDO consists of three main elements as shown in Fig.
1 (see right box): (i) a deterministic and/or stochastic
simulation tool (integrating physics-based solvers with
UQ), (ii) an optimization algorithm, and (iii) a shape
modi�cation tool.

Despite the increased computational power and ro-
bustness of numerical algorithms, high-�delity SBDO
for shape optimization still remains a challenging pro-
cess, from theoretical, algorithmic, and technological
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viewpoints. Among others, one of the most complex
challenge is how to deal with high-dimensional, large
design spaces, especially when computationally-expensive
black-box functions are used for the performance anal-
ysis and a global optimum is sought after. Potential
design improvements signi�cantly depend on dimension
and extension of the design space. Obviously, high di-
mension and variability spaces are more di�cult and
expensive to explore but, at the same time, potentially
allow for bigger improvements. Even if e�cient GO al-
gorithms have been proposed (Jones et al., 1993; Cam-
pana et al., 2009a; Serani and Diez, 2017b) and ap-
plied with success to SBDO (Campana et al., 2015;
Serani et al., 2016a; Serani and Diez, 2018a), �nding
a potentially global optimal solution within reasonable
computational time/cost remains a critical issue and a
technological challenge. Additionally, UQ of complex
applications is computationally very demanding, espe-
cially if high-order statistical moments and/or quantiles
need to be assessed as in robust and reliability-based
design optimization. Both global optimization and UQ
are a�ected by the curse of dimensionality as the al-
gorithms' complexity and computational cost rapidly
increase with the problem dimension. This is generally
also true if metamodels are applied. Therefore, the
assessment and breakdown of the design-space dimen-
sionality are key elements for the e�ciency and a�ord-
ability of the SBDO (Diez et al., 2015a).

In this context, shape optimization research has tra-
ditionally focused on shape and topology parameteri-
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Figure 1: SBDO framework with o�-line design-space dimensionality reduction.

zations, as critical factors to achieve the desired level of
design variability (Rozvany et al., 1992; Bletzinger and
Maute, 1997; Samareh, 2001). Obviously, the choice
of the shape parameterization technique has a large
impact on the practical implementation and the suc-
cess of the optimization process. Shape deformation
methods have been an area of continuous and exten-
sive research within the �elds of computer graphics
and geometry modelling. Consequently, a wide va-
riety of techniques has been proposed during recent
years (Sieger et al., 2015). Several techniques have
been developed and applied (Samareh, 2001), such as:
basis vector methods (Pickett Jr. et al., 1973), do-
main element and discrete approaches (Leiva and Wat-
son, 1998), partial di�erential equation (Bloor and Wil-
son, 1995), CAD-based (Yang, 1995), analytical (Hicks
and Henne, 1978), polynomials (Haftka and Grandhi,
1986), B-splines (Grigoropoulos and Chalkias, 2010),
non-uniform rational Bezier-spline (NURBS), patches
of Bezier surfaces (Campana et al., 2006), free-form de-
formation (FFD, Sederberg and Parry 1986), and mor-
phing approaches (Kandasamy et al., 2013). In order
for the SBDO to avoid the curse of dimensionality and
be successful, the parameterization method must e�-
ciently describe the design variability with as few vari-
ables as possible. However, in most of past SBDO lit-
erature, the trade-o� between geometric variability and
design space dimensionality is not directly/quantitatively
addressed or only qualitatively assessed.

In order to solve complex and computationally-demanding
optimization problems, on-line linear design-space di-
mensionality reduction techniques have been developed,
requiring the evaluation of the objective function or
its gradient. Principal component analysis (PCA) or
proper orthogonal decomposition (POD) methods have
been applied for local reduced-dimensionality represen-
tations of feasible design regions (Raghavan et al., 2013a,b).
The associated POD/PCA-based expansions are not
truncated and the dimensionality reduction is achieved
by a local representation of an α-manifold of feasi-
ble designs, embedding therefore the design constraints
(whose evaluation is required) in the design parameteri-
zation and preserving the original design variability. A
PCA/POD-based approach is used in the active sub-
space method (Lukaczyk et al., 2014) to discover and

exploit low-dimensional monotonic trends in the objec-
tive function, based on the evaluation of its gradient.
This type of methods improve the optimization e�-
ciency by basis rotation and/or dimensionality reduc-
tion. Nevertheless, they do not provide an assessment
of the design space and associated shape parameter-
ization before optimization is performed or objective
function and/or gradient are evaluated. Moreover, if
gradients are not directly provided (as in the case of
black-box tools) their evaluation by �nite di�erences
can be inaccurate due to numerical noise and/or resid-
uals a�ecting the solution. Finally, these methods are
local in nature and their extension to GO is not trivial
nor straightforward.

O�-line (or up-front) linear models have been de-
veloped with focus on design-space variability and di-
mensionality reduction for e�cient optimization pro-
cedures. In Borzì et al. (2010) and Schillings et al.
(2011) the Karhunen-Loève expansion (KLE, equiva-
lent to POD) is used for representing distributed ge-
ometrical uncertainties and building a reduced-order
spatial model for uncertainty quanti�cation. A method
based on the KLE has been formulated in Diez et al.
(2015a) for the assessment of the shape modi�cation
variability and the de�nition of a reduced-dimensionality
global model of the shape modi�cation vector, for ar-
bitrary modi�cation methods. No objective function
evaluation nor gradient is required by the method, as
this is entirely based on the concept of geometric vari-
ance. KLE is formulated in the continuous domain and
reduces to the eigenproblem of an integral operator,
representing a Fredholm integral equation of the sec-
ond kind. The discretization of the shape domain (and
associated integral equation) yields the eigenproblem of
a matrix, which appears to be the autocovariance ma-
trix of the discretized shape modi�cation vector. This
corresponds to solving the PCA of the discretized shape
modi�cation vector. KLE/PCA methods have been
successfully applied for deterministic (Chen et al., 2015;
Diez et al., 2016a; Serani et al., 2016a) and stochastic
(Diez et al., 2015b, 2018a) hull form optimization of
mono-hulls and catamarans in calm water and waves,
respectively. Similarly, Poole et al. (2017) have applied
POD to airfoil shape optimization via singular value
decomposition (SVD) of an airfoil geometric-data li-
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brary. O�-line methods improve the shape optimiza-
tion e�ciency by reparameterization and dimensional-
ity reduction, providing the assessment of the design
space and the shape parameterization before optimiza-
tion and/or performance analysis are carried out. The
assessment is based on the geometric variability associ-
ated to the design space, making the method fully o�-
line and computationally very e�cient and attractive,
as no simulations are required. Theory and mathemat-
ical derivation of design variability breakdown, asso-
ciated con�dence levels, and dimensionality reduction
for hydrodynamic shape optimization still remain lim-
ited. Applications to ship hydrodynamic optimization
are also limited.

The objective of the present work is to demonstrate
how o�-line KLE/PCA methods based on the concept
on geometric variance can be used to assess di�erent
design spaces and shape parameterization methods be-
fore optimization is performed and without needing to
run simulations for the design performance prediction.
The method is further exploited to reduce the dimen-
sionality of the design spaces (based on the KLE/PCA
eigenvalues), providing an e�cient shape reparameter-
ization using KLE/PCA eigenmodes.

The approach is shown in Fig. 1. The left box in-
cludes the elements of the geometry-based formulation
of the pre-optimization (o�-line) design-space dimen-
sionality reduction method. The right box represents
a typical optimization loop including shape modi�ca-
tion, analysis tool (e.g., computational �uid dynamics,
�nite element analysis, possibly coupled with UQ), and
optimization algorithm, whose detailed description is
beyond the scope of the current work. The method
is demonstrated for the hull-form optimization of the
DTMB 5415 model, an early and open to public ver-
sion of the USS Arleigh Burke destroyer DDG 51, ex-
tensively used as an international benchmark for shape
optimization problems (e.g., Diez et al. 2018b,c). The
optimization aims at the reduction of the (model-scale)
calm-water resistance at Froude number equal to 0.28.
Simulations are based on a potential �ow code with vis-
cous correction. Three design spaces are investigated,
namely provided by FFD, radial basis functions (RBF),
and global modi�cation functions (GMF). It may be
noted that the objective of the investigation is not the
comparison of di�erent shape modi�cation methods per
se, but the demonstration of how KLE/PCA can be
used to assess and compare di�erent design spaces pro-
vided by arbitrary modi�cation methods. An example
of comparison by KLE/PCA of design spaces de�ned
using the same modi�cation method (namely FFD) is
given in Diez et al. (2015a).

2. Dimensionality Reduction Method

General de�nitions and assumptions for design-space
assessment and dimensionality reduction are presented

Figure 2: Scheme and notation for the current formulation.

in the following. For further details on the theory
and implementation, the interested reader is referred
to Diez et al. (2015a).

2.1. General De�nitions and Assumptions
Consider a geometric domain G (which identi�es

the original or parent shape) and a set of coordinates
ξ ∈ G ⊂ Rn with n = 1, 2, 3. Assume that u ∈ U ⊂ RM
is the design-variable vector, which de�nes a continu-
ous shape modi�cation vector δ(ξ,u) ∈ Rm with m =
1, 2, 3 (with m not necessarily equal to n). Each ξ ∈ G
is transformed in ξ′ ∈ G′ as

ξ′ = ξ + δ(ξ,u) (1)

where G and G′ represent the original and modi�ed
shapes respectively (see Fig. 2).

Consider u as a random variable, with associated
probability density function p(u). This corresponds to
formulating the optimization problem as a problem af-
fected by epistemic uncertainty, in the sense that be-
fore solving the problem, the optimal solution is yet un-
known. In this context, the distribution p(u) represents
the prior probability of �nding an optimal solution in
a given region of the design space. Although its de�ni-
tion can be based on experience and/or earlier studies,
it is often not trivial and therefore the prior is usually
de�ned as a uniform distribution function (therefore
giving each point in the design space the same prob-
ability to be an optimal solution). The mean shape
modi�cation associated to p(u) is

〈δ〉 =

∫
U
δ(ξ,u)p(u)du (2)

whereas the variance associated to the shape modi�ca-
tion vector (geometric variance) is de�ned as

σ2 = 〈‖δ‖2〉 =

∫
U

∫
G
δ̃(ξ,u) · δ̃(ξ,u)p(u)dξdu (3)
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where δ̃ = δ − 〈δ〉. For the sake of simplicity and
without loss of generality, in the following it is assumed
〈δ〉 = 0 and δ̃ = δ.

2.2. Aim of Dimensionality Reduction and

Evaluation Metrics
Within this framework, the aim of the dimensional-

ity reduction is to identify an approximated represen-
tation of the shape modi�cation vector, namely δ̂(ξ,x),
for which its shape modi�cation depends on a new
reduced-dimensionality design variable x ∈ X ⊂ RN
with N < M . In general, the reconstructed vector
δ̂(ξ,x) is estimated during a process of encoding/decoding
by the dimensionality reduction methods. The shape
modi�cation vector δ(ξ,u) is encoded in a low dimen-
sional latent space, spanned by a new design variable
x. Subsequently, the decoding process reconstructs the
original shape modi�cation vector as δ̂(ξ,x). Figure
2 shows an example with the notation for n = 1 and
m = 2.

A common metrics to evaluate the quality of δ̂(ξ,x)
compared to δ(ξ,u) is the mean squared error (MSE)
normalized to the total geometric variance (σ2) as

NMSE =
MSE

σ2
=

=

∫∫
U×X ,G

‖δ(ξ,u)− δ̂(ξ,x)‖2p(u,x)dξdudx∫∫
U,G
‖δ(ξ,u)‖2p(u)dξdu

(4)

where p(u,x) is an unknown joint probability distribu-
tion over the product space U × X .

2.3. Karhunen-Loève Expansion and

Principal Component Analysis
At the continuous level, an optimal linear represen-

tation of the shape modi�cation vector is provided by
its KLE (Diez et al., 2015a), as

δ̂(ξ,x) =

N∑
i=1

xiϕi(ξ) (5)

where ϕi are the eigensolutions of the Fredholm inte-
gral equation of the second kind∫

G
〈δ(ξ,u)⊗ δ(ψ,u)〉ϕ(ψ)dψ = λϕ(ξ) (6)

Discretizing G by a number of Q elements of equal
measure ∆G, assuming for the sake of simplicity and
without loss of generality ∆G = 1, and sampling U
by a statistically convergent number of Monte Carlo
(MC) realizations S, so that {uk}Sk=1 ∼ p(u). The
spatial discretization d(u)k of δ(ξ,uk) are organized in
a [S × L] data matrix as

D =

 d(u)
T
k=1
...

d(u)
T
k=S

 (7)

where L = mQ. To simplify the notation, in the fol-
lowing d(u) and d̂(x) are referred to as simply d and

d̂, respectively.
At the discrete level, the integral problem in Eq. 6

reduces to solving the PCA of D. The principal com-
ponents are de�ned by the solution of the eigenproblem

Czi = λizi ∀i = 1, . . . , L (8)

where

C =
1

S
DTD (9)

is the [L × L] covariance matrix. PCA allows to re-
duce the input dimensionality of the data, performing
a projection of data points in a new linear subspace, de-
�ned by the orthonormal eigenvectors (principal com-
ponents) of C. These eigenvectors have the proper-
ties of maximizing the (geometric) variance of points
projected on them and minimizing the mean squared
distance between the original points and the relative
projections. Moreover, the eigenvalues {λi}Li=1 (with
λi ≥ λi+1) represent the variance resolved along the
associate eigenvectors {zi}Li=1. Additionally,

σ2 =

∞∑
i=1

λi (10)

From this property, a subset of N eigenvectors is used
to compute a reduced-dimensionality representation of
the original vector d as

d̂k = Zxk (11)

where the matrix Z has dimension [L×N ] and is com-
posed by the �rst N largest-variance principal compo-
nents. Equation 11 represents the desired reparameter-
ization of the shape modi�cation vector by KLE/PCA

where d̂k represents the minimum-squared-error ap-
proximation of dk and the new design variables xk are
given by

xk = ZTdk (12)

The discrete form of the NMSE in Eq. 4 reads

NMSE =
1
S

∑S
k=1 ||dk − d̂k||2

1
S

∑S
k=1 ||dk||2

=

=
1
S

∑S
k=1 ||dk||2 −

∑N
i=1 z

T
i Czi

1
S

∑S
k=1 ||dk||2

(13)

which holds if one uses either a validation set or the
training set for the assessment. In the latter case, Eq.
13 can be written as

NMSE = 1−
∑N
i=1 λi

1
S

∑S
k=1 ||dk||2

(14)
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It may be noted that in principle Eqs. 7-14 still
hold if data standardization is used, i.e. if a data ma-
trix with unit-variance columns is processed. Although
this is a standard procedure to analyze heterogeneous
and discrete data with PCA and/or non-supervised ma-
chine learning methods, this would change the Hilbert
space (and the associated norm) embedding the anal-
ysis and the de�nition of geometric variance in Eq. 3,
modifying the key metrics the dimensionality reduction
is based upon (Diez et al., 2015a). As a consequence,
the resulting reduced-dimensionality representation of
δ would not be optimal anymore to resolve the geomet-
ric variance associated to the original design space. In
this regard, Eqs. 7-14 for discrete data derive directly
from Eqs. 1 -6 de�ned for continuous variables. In
particular, PCA (Eq. 8) is the discrete counterpart of
KLE integral equation (Eq. 6). Therefore, data and
covariance matrices should not be standardized if an
approximate (discrete) solution of Eq. 6 is sought af-
ter. Equations and examples of the use of generalized
Hilbert spaces (at the continuous level) are given in
Diez et al. (2015a).

3. Shape Modi�cation Methods

It is often convenient in the context of SBDO to ap-
ply shape modi�cation methods that allow also for the
modi�cation of the computational grid, without need
for regridding from scratch. This usually overcomes
the di�culties and bottle necks associated to regrid-
ding of new designs (Sieger et al., 2014). Modi�cation
methods that modify not only the object shape, but
also the space embedding the object, usually allows for
automatic grid modi�cation: (1) the grid has not to be
regenerated from scratch each time the object shape is
modi�ed, (2) the initial topology is usually preserved,
and (3) parts of the object can be deformed with a
prescribed degree of continuity.

Here, three common approaches to shape and grid
modi�cation are applied as described in the following.
These methods are suitable candidates for demonstrat-
ing shape reparameterization by KLE/PCA since they
allow for the use of a possibly in�nite number of design
variables.

3.1. Free-form Deformation
FFD has been widely used in many technological

�elds (Menzel and Sendho�, 2008; Campana et al., 2009b;
Diez et al., 2015a; Chen et al., 2015). The technique
was �rst described in Sederberg and Parry (1986) and
is based on an earlier study described in Barr (1984).
The idea is to embed an object within a trapezoidal (or
other topology) lattice and modify the object within
the trapezoid as the lattice is modi�ed. A coordinate
system is assumed, with origin ξ0 at one of the trape-
zoid vertices. Any point within the trapezoid has α, β,

and γ coordinates such that

ξ = ξ0 + αT̂1 + βT̂2 + γT̂3 (15)

with α, β, and γ bounded by [0, 1] and given by

α =
T̂2 × T̂3 · (ξ − ξ0)

T̂2 × T̂3 · T̂1

,

β =
T̂1 × T̂3 · (ξ − ξ0)

T̂1 × T̂3 · T̂2

,

γ =
T̂1 × T̂2 · (ξ − ξ0)

T̂1 × T̂2 · T̂3

(16)

Control points (CPs) cijk are de�ned as lattice nodes.

The number of CPs used in T̂1, T̂2, and T̂3 directions
are t1, t2, and t3, respectively. The coordinates of mod-
i�ed CPs depend on the original-lattice nodes and the
design variable vector, as

cijk(u) = ξ0 +
i

t1
T̂1 +

j

t2
T̂2 +

k

t3
T̂3 + uijk (17)

The shape modi�cation is achieved by interpolating
the CPs' modi�cation over the embedding space. The
interpolation can be performed using di�erent polyno-
mial bases. Herein, a tensor product of trivariate Bern-
stein polynomial is used (Sederberg and Parry, 1986)

δ(ξ, u) =

t1∑
i=0

t2∑
j=0

t3∑
k=0

bi,t1(α)bj,t2(β)bk,t3(γ)cijk(u)−ξ

(18)

where the generic Bernstein basis polynomials is de-
�ned as

bv,r(χ) =

(
r

v

)
χv(1− χ)r−v (19)

On the one hand, the FFD can be applied to any
computational-grid topology and is suitable for a vari-
ety of analysis codes. On the other hand, the variables
associated to the CPs' modi�cation may have little or
no physical meaning to the design engineers, thereby
making it di�cult to de�ne an e�ective design space.

3.2. Radial Basis Function
The shape modi�cation is de�ned starting from given

modi�cations at speci�ed CPs, which are usually nodes
of the (discretized) object surface. The RBF interpola-
tion is based on three sets of coordinates: original and
modi�ed CPs (cj and c′j(u) = cj + uj , respectively),

surface nodes {ξi}Qi=1 of the original discretized shape,
and additional conditions if necessary. The goal is to
�nd updated surface node positions all over the whole
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geometry. Treating the shape modi�cation problem as
a scattered data interpolation problem, the shape mod-
i�cation function δ(ξ,u) exactly interpolates the pre-
scribed displacements at a given CP (ui), and smoothly
interpolates these displacements onto the geometry.

The shape modi�cation function is de�ned as a lin-
ear combination of radially-symmetric kernel functions
ϕj(ξ) = ϕ(‖ξ − cj‖) centered in cj and weighted by
wj ∈ R3, plus a linear polynomial to guarantee linear
precision such that

δ(ξ,u) =

M∑
j=1

wjϕj(ξ) +

4∑
k=1

qkπk(ξ) (20)

where {π1, π2, π3, π4} = {ξ1, ξ2, ξ3, 1} is a basis of the
space of linear trivariate polynomials, weighted by co-
e�cients qk ∈ R3 (Sieger et al., 2014). The weights
wj and qk are found imposing ξj = cj and solving the
(M + 4)× (M + 4) linear system

AW = B (21)

where

A =



ϕ1(c1) . . . ϕM (c1) π1(c1) . . . π4(c1)
...

. . .
...

...
. . .

...
ϕ1(cM ) . . . ϕM (cM ) π1(cM ) . . . π4(cM )
π1(c1) . . . π1(cM ) 0 . . . 0

...
. . .

...
...

. . .
...

π4(c1) . . . π4(cM ) 0 . . . 0


;

W = [w1, . . . ,wM ,q1, . . . ,q4]
T

;

B = [u1, . . . ,uM , 0, . . . , 0]
T

(22)

The shape of the interpolant is determined by the
choice of the kernel function ϕ : R → R. Commonly
used kernel includes Gaussian, multiquadric, and in-
verse mutiquadric, as summarized in Tab. 1.

Table 1

Commonly used kernel functions for RBF interpolation. ε is
the shape parameter.

Kernel Equation

Gaussian ϕ(ξ) = e−(ε ξ)2

Multiquadric ϕ(ξ) =
√

1 + (ε ξ)2

Inverse Multiquadric ϕ(ξ) = 1/
√

1 + (ε ξ)2

RBF can be applied on the whole object or a part
of it. Moreover, the associated design variables can be
related to a physical meaning, since CPs' displacement
is directly related to the shape modi�cation in that re-
gions.

3.3. Global Modi�cation Function
The shape modi�cation δ(ξ,u) is de�ned using a

linear combination of M vector-valued functions of the
Cartesian coordinates ξ ∈ R3 over a hyper-rectangle
embedding the object (Serani et al., 2016a)

φi(ξ) : V = [0, Lξ1 ]× [0, Lξ2 ]× [0, Lξ3 ] ∈ R3 −→ R3

(23)

with i = 1, ...,M , as

δ(ξ,u) =

M∑
i=1

ui φi(ξ) (24)

where the coe�cients ui ∈ R (i = 1, . . . ,M) are the
design variables and

φi(ξ) :=

3∏
j=1

sin

(
aijπξj
Lξj

+ rij

)
eq(i) (25)

imposing the following orthogonality property:∫
V
φi(ξ) · φk(ξ)dξ = δik (26)

In Eq. 25, {aij}3j=1 ∈ R de�ne the order of the func-

tion along j-th axis; {rij}3j=1 ∈ R are the corresponding

spatial phases; {Lξj}3j=1 are the hyper-rectangle edge
lengths; eq(i) is a unit vector. Shape modi�cations can
be applied along ξ1, ξ2, or ξ3, with q(i) = 1, 2, or 3
respectively.

On the one hand, GMF is independent of computational-
grid topology. On the other hand, there is not a direct
physical meaning associated to the shape modi�cation.

4. Demonstration Application

The o�-line dimensionality reduction method is ap-
plied for the shape reparameterization and hull-form
optimization of the DTMB 5415 model (see Fig. 3).

Table 2

DTMB 5415 model scale main particulars and test condition.

Description Unit Value

Displacement tonnes 0.549
Length between perpendiculars m 5.720
Beam m 0.760
Draft m 0.248
Longitudinal center of gravity m 2.884
Vertical center of gravity m 0.056
Water density kg/m3 998.5
Kinematic viscosity m2/s 1.09E-06
Gravity acceleration m/s2 9.803
Froude number � 0.280
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Figure 3: A 5.720 m length model of the DTMB 5415 (CNR-
INSEAN model 2340).

Main particulars of the model scale and optimization
condition are summarized in Tab. 2. Since no rudder
is considered here, the length between perpendiculars
(Lpp) is calculated from the fore perpendicular to the
transom bottom edge.

4.1. Optimization Problem
The problem formulation for the shape optimization

of the DTMB 5415 reads

minimize RT(u) with u ∈ RM
subject to Lpp(u) = Lpp0

and to ∇(u) = ∇0,
|∆B(u)| ≤ 0.05B0,
|∆T (u)| ≤ 0.05T0,
V (u) ≥ V0,
uli ≤ ui ≤ uui ∀i = 1, . . . ,M

(27)

where RT is the calm-water resistance at Fr = 0.28
(equivalent to 20 kn for the full-scale ship). Equality
constraints are de�ned for the length between perpen-
diculars (Lpp) and for the displacement (∇). Inequality
constraints include 5% of maximum variation of beam
(B) and the drought (T ) and dedicated volume for the
sonar dome (V ), corresponding to 4.9 m diameter and
1.7 m length (cylinder). Subscript `0' indicates original-
geometry values. Equality and inequality constraints
on the geometry deformations are based on Diez et al.
(2018b)

Using the reduced-dimensionality design space, the
optimization problem (Eq. 27) is recast as

minimize RT(x) with x ∈ RN
subject to Lpp(x) = Lpp0

and to ∇(x) = ∇0,
|∆B(x)| ≤ 0.05B0,
|∆T (x)| ≤ 0.05T0,
V (x) ≥ V0,
xli ≤ xi ≤ xui ∀i = 1, . . . , N

(28)

with xli = inf{zTi D} and xui = sup{zTi D}.

4.2. Design-spaces Setup and Data

Preprocessing
Three design spaces are used based on FFD, RBF,

and GMF, de�ned by M = 100, 25, and 27 design
variables, respectively. Details of shape modi�cation
parameters setup are summarized in Tabs. 3, 4, and
5. Figures 4a and b show, respectively, the FFD and

(a) Design space 1, FFD control points

(b) Design space 2, RBF control points

(c) Design space 3, GMF example modi�cation (isomodi�cation
curves)

Figure 4: Shape modi�cation methods at a glance.

RBF control points: blue dots represent (active) CPs
whose coordinates are modi�ed during the optimiza-
tion, whereas red octahedra represents CPs with �xed
coordinates. The latter are used to constrain the shape
modi�cation at the intersection with the symmetry plane
(ξ2 = 0). The number and the coordinates of CPs are
chosen to generate global modi�cations of the hull. Fi-
nally, an example of the modi�cation obtained by GMF
is shown Fig. 4c. For all the methods, shape modi�ca-
tions are de�ned to produce geometry deformation in
ξ2-direction (direction perpendicular to the symmetry
plane) only.

The number of design variables is chosen based on
the quality of the shape modi�cation obtained by each
method. Di�erent methods use di�erent number of de-
sign variables. The design variables bounds (see Tabs.
3, 4, and 5) are set considering the trade-o� between:
(a) producing a meaningful and regular shape and (b)
allowing shape modi�cation variability as large as pos-
sible. Finally, to satisfy the equality constraints in Eq.
27, the following scaling equations are applied to the
modi�ed shapes:

ξ′1 = ξ′1
Lpp0

Lpp
,

ξ′2 = ξ′2

√
∇0

∇
Lpp

Lpp0

,
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Table 3

Design space 1, FFD control points and variables setup.

Layer Layer plane No. CPs No. active CPs CPs activation criteria Variable range

1 ξ1 = 0.00 24 8 ξ2 ≥ 6.50 ∧ ξ3 ≥ 2.83 −1.0 ≤ u ≤ 1.0
2 ξ1 = 16.18 24 8 ξ2 ≥ 6.50 ∧ ξ3 ≥ 2.83 −1.0 ≤ u ≤ 1.0
3 ξ1 = 32.37 24 6 ξ2 ≥ 6.50 ∧ 2.83 ≤ ξ3 ≤ 8.70 −2.0 ≤ u ≤ 2.0
4 ξ1 = 48.56 24 6 ξ2 ≥ 6.50 ∧ 2.83 ≤ ξ3 ≤ 8.70 −2.0 ≤ u ≤ 2.0
5 ξ1 = 64.75 24 6 ξ2 ≥ 6.50 ∧ 2.83 ≤ ξ3 ≤ 8.70 −2.0 ≤ u ≤ 2.0
6 ξ1 = 80.94 24 6 ξ2 ≥ 6.50 ∧ 2.83 ≤ ξ3 ≤ 8.70 −2.0 ≤ u ≤ 2.0
7 ξ1 = 97.13 24 6 ξ2 ≥ 3.25 ∧ 2.83 ≤ ξ3 ≤ 8.70 −2.0 ≤ u ≤ 2.0
8 ξ1 = 113.22 24 18 ξ2 ≥ 3.25 −1.0 ≤ u ≤ 1.0
9 ξ1 = 129.51 24 18 ξ2 ≥ 3.25 −1.0 ≤ u ≤ 1.0
10 ξ1 = 145.70 24 18 ξ2 ≥ 3.25 −1.0 ≤ u ≤ 1.0

Table 4

Design space 2, RBF control points and variables setup.

Kernel Shape parameter No. CPs No. active CPs Variable range

Gaussian ε = 1÷ 6 207 25 −1.5 ≤ u ≤ 1.5

Table 5

Design space 3, GMF parameters and variables setup

Function Function parameters Variable range
i ai1 ri1 ai2 ri2 ai3 ri3 q(i)

1 1.0 0 1.0 0 1.0 0 2

−1.0 ≤ u ≤ 1.0

2 1.0 0 1.0 0 2.0 0 2
3 1.0 0 2.0 0 1.0 0 2
4 2.0 0 1.0 0 1.0 0 2
5 1.0 0 2.0 0 2.0 0 2
6 2.0 0 1.0 0 2.0 0 2
7 2.0 0 2.0 0 1.0 0 2
8 2.0 0 2.0 0 2.0 0 2
9 1.0 0 1.0 0 3.0 0 2
10 1.0 0 3.0 0 1.0 0 2
11 3.0 0 1.0 0 1.0 0 2
12 1.0 0 2.0 0 3.0 0 2
13 2.0 0 1.0 0 3.0 0 2
14 1.0 0 3.0 0 2.0 0 2
15 2.0 0 3.0 0 1.0 0 2
16 3.0 0 1.0 0 2.0 0 2
17 3.0 0 2.0 0 1.0 0 2
18 2.0 0 2.0 0 3.0 0 2
19 2.0 0 3.0 0 2.0 0 2
20 3.0 0 2.0 0 2.0 0 2
21 1.0 0 3.0 0 3.0 0 2
22 3.0 0 1.0 0 3.0 0 2
23 3.0 0 3.0 0 1.0 0 2
24 2.0 0 3.0 0 3.0 0 2
25 3.0 0 2.0 0 3.0 0 2
26 3.0 0 3.0 0 2.0 0 2
27 3.0 0 3.0 0 3.0 0 2

ξ′3 =
(ξ′3 + T0)∇0

∇
Lpp0

Lpp

B0

B0

− T0 (29)

Moreover, designs not satisfying the inequality con-
straints in Eq. 27 are not included in the data matrix

(see Eq. 7). As a results, all designs processed by PCA
are feasible. The idea is to de�ne an optimal basis for
the representation of the feasible domain. Nevertheless,
there are no guarantees that all geometries are feasible
during the optimization.

The design spaces are sampled following a uniform
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random distribution of S = 40, 000 hull-form designs
by the MC method. The data matrix D collects a
L = 1, 800 grids points from hull discretization. The
design spaces feasibility (with respect to geometric con-
straints) is shown in Tab. 6. Design space 3 (based
on GMF) has the highest feasibility (16.5%), followed
by design space 2 (based on RBF) (12.6%), whereas
the design space 1 (based on FFD) achieves the lowest
number of feasible geometries (6.4%). Finally, a sub-
set of 2, 000 feasible designs is randomly selected (no
bias is introduced). They are used to de�ne the design-
spaces data matrices (with dimension 2, 000 × 1, 800)
and compare the results.

Table 6

Design-space feasibility (F) based on 40,000 Monte Carlo sam-
ples.

Design space No. feasible shapes F%

1 (FFD) 2,579 6.40
2 (RBF) 5,078 12.6
3 (GMF) 6,653 16.5

4.3. Hydrodynamic Solver
The calm-water total resistance is evaluated using

the linear potential �ow code WARP (Wave Resistance
Program), developed at CNR-INM. Wave resistance
computations are based on the Dawson (double-model)
linearization (Dawson, 1977). The frictional resistance
is estimated using a �at-plate approximation, based on
the local Reynolds number (Schlichting and Gersten,
2000). The ship balance (sinkage and trim) is �xed.
Details of equations, numerical implementations, and
validation of the numerical solver are given in Bas-
sanini et al. (1994). Simulations are performed for the
right demi-hull, taking advantage of symmetry about
the ξ1ξ3-plane. The computational domain for the free-
surface is de�ned within 1Lpp upstream, 3Lpp down-
stream, and 1.5Lpp sideways, for a total of 150×44 grid
nodes. The associated hull grid if formed by 180 × 40
nodes.

4.4. Optimization Algorithm and Setup
As global optimizer, a deterministic particle swarm

optimization (DPSO, Serani et al. 2016b) is used. It is
formulated as follows{

vk+1
j = χ

[
vkj + c1(pj − xkj ) + c2(g − xkj )

]
xk+1
j = xkj + vk+1

j

(30)

The above equations update velocity (vkj ) and position

(xkj ) of the j-th particle at the k-th iteration, where:
χ is the constriction factor; c1 and c2 are respectively
the social and cognitive learning rate; pj is the per-
sonal best position ever found by the j-th particle in
the previous iterations and g is the global best position
ever found in the previous iterations by all the particles.

A discussion for an e�ective and e�cient use of DPSO
for SBDO in ship hydrodynamics has been presented in
Serani and Diez (2017a). The parameter setup used for
DPSO is selected as suggested in Serani et al. (2016b):
number of particles Np = 4N ; particle initialization
with Hammersley sequence sampling (HSS) distribu-
tion on domain only with non-null velocity; set of coe�-
cients equal to χ = 0.721, c1 = c2 = 1.655; semi-elastic
wall-type approach for box constraints. A �xed and
limited budget of 1,000 function evaluations is used.

5. Numerical Results

Design-space assessment and dimensionality reduc-
tion results, along with simulation-based optimization
outcomes, are presented and discussed in the following
subsections.

5.1. Design-space Assessment and

Dimensionality Reduction
The design-space assessment and dimensionality re-

duction is based on the PCA eigenvalues and eigen-
vectors. The former identify the original design-space
variability retained (see Eq. 10), whereas the latter
de�ne the reconstruction error through projection (see
Eq. 13). Herein, the reduced-dimensionality N is set
so as to achieve a NMSE ≤ 5%, equivalent (at least) to
the 95% of the original design-space variability. The
reduced-dimensionality models are validated using a
10-fold cross-validation procedure (Ross, 2014). Train-
ing and test sets are composed by 90 and 10%, respec-
tively, of the 2,000 MC items.

Figure 5 presents the variance retained by the �rst
N PCA eigenvectors, which equals the PCA eigenval-
ues cumulative sum. It can be seen how, with cur-
rent settings and design-variable bounds, design space 3
(GMF) achieves the highest design variability, whereas
design space 2 (RBF) achieves the lowest. Speci�cally,
design space 3 achieves a geometric variance that is
about twice and about one and a half times that ob-
tained by design spaces 2 (RBF) and 1 (FFD), respec-
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Figure 5: Design-space variability retained as a function of the
number N of PCA components.
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Figure 6: Module of the �rst �ve PCA eigenvectors.
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Figure 7: NMSE convergence as a function of the number N of PCA components.

tively. This can be justi�ed by the GMF formulation,
since it is intrinsically global, whereas both FFD and
RBF are local and limited by the number and posi-
tion of CPs. First �ve PCA eigenvectors are shown in
Fig. 6, for each design space. Speci�cally, the most
important eigenvectors for each design-space parame-
terization show the type and order of variations ad-
dressed with each design space. This comparison em-
phasizes the di�erence in variations produced by the
di�erent design spaces. For instance, the setup for de-
sign spaces 1 and 3 (based on the current implemen-

tation of FFD and GMF, respectively) provides with
more global shape modi�cations with signi�cant vari-
ations in sectional area and waterline along the ship
length. The design space 2 (based on RBF) gives more
localized modi�cations close to the bow and the stern.

The design-space dimensionality reduction conver-
gence versus the number of MC samples (S) is shown in
Fig. 7 in terms of NMSE as a function of the reduced-
dimensionality space dimension N . Training and test
sets results are shown in Fig. 7a and b, respectively.
The results are found convergent versus S for all the
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Table 7

Dimensionality reduction (DR) summary.

Design space Parameterization No. design variables DR% NMSE%
Original (M) Reduced (N) Training set Test set

1 FFD 100 14 86 4.03 4.12
2 RBF 25 21 16 3.62 3.78
3 GMF 27 17 37 4.20 4.34

Design
space

Target Reconstruction Error

1

(FFD) (M = 100) (N = 14)

2

(RBF) (M = 25) (N = 21)

3

(GMF) (M = 27) (N = 17)

Figure 8: Example of reconstruction and error of three target hull variants.

shape modi�cation methods. The three design spaces
have been reduced up to N = 14 (design space 1), 21
(design space 2), and 17 (design space 3) design vari-
ables, respectively. The design space 1 (based on FFD)
shows the highest dimensionality reduction (86%), fol-
lowed by the design space 3 (based on GMF, 37%), and
�nally the design space 2 (based on RBF, 16%). Shape
reparameterization results are summarized in Tab. 7.
An example of shape reconstruction of a target geome-
try (one of the 2,000 MC items) and the corresponding
reconstruction error using the reduced-dimensionality
design spaces is shown in Fig. 8. For each design space,
the target geometry is quite extreme and not realistic,
and used as challenging test for demonstration. No sig-
ni�cant di�erences between target and reconstructed
hulls can be observed, with low values of the recon-
struction error.

Based on the current design-spaces setup, the re-
sults underline that: (1) overall, the GMFmethod is ca-
pable to provide the highest design-space variance (see
Fig. 5), (2) the FFD method de�nes a highly-linearly
dependent design-space, since it achieves a signi�cant
dimensionality reduction (see Tab. 7). Finally, GMF
and RBF (relatively) low dimensionality-reduction val-
ues show the di�culty to reduced the design-space di-
mensionality, if the original space is suitably �well-de�ned�.

This means that independently of the shape modi�ca-
tion method, if the original design space is de�ned by
a basis of linearly-independent shape modi�cation vec-
tors, the KLE/PCA cannot provide with any dimen-
sionality reduction.

5.2. Optimization
To assess the e�ects of the reduced-dimensionality

spaces on the hull-form optimization of the DTMB 5415
three analysis are carried out for each design space: (1)
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Figure 9: Sensitivity analysis conditional to 1st PCA eigenvec-
tor.
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Figure 10: Optimization convergence conditional to design
space parameterization.

a preliminary sensitivity analysis along the 1st PCA
eigenvector; (2) an SBDO procedure using two reduced-
dimensionality design spaces with N = 8 and the value
providing NMSE ≤ 5%, respectively; (3) an SBDO pro-
cedure using the original design space.

The sensitivity analysis along the 1st PCA eigen-
vector is shown in Fig. 9. The reduced-design variable
x1 is normalized between -1 and 1. The design space 1
provides the highest objective improvement (about 6%)
followed by design space 3 (3.5%), whereas design space
2 produces an improvement lower than 0.1%. These
is in agreement with the results of the design-spaces

(a) Design space 1, N = 14

(b) Design space 2, N = 21

(c) Design space 3, N = 8

Figure 11: Original versus optimized shapes.

assessment: the improvement ranking corresponds to
the variance-retained (by 1st PCA eigenvector) rank-
ing (see Fig. 5).

Figure 10 shows the comparison of the optimiza-
tion convergence conditional to the design space, us-
ing two reduced-dimensionality spaces and the origi-
nal one: N = 8, 14 and M = 100 for design space 1;
N = 8, 21 and M = 25 for design space 2; N = 8,
17 and M = 27 for design space 3. Shape reparam-
eterization by reduced-dimensionality spaces provides
a larger objective improvement than the original de-
sign space, except for design space 3 with N = 17.
It may be noted that the optimization runs are per-
formed using a �xed (and intentionally limited) budget
of function evaluations, meaning that the optimization
algorithm is far from the convergence. A comparison
of the design-space-best optima hull stations and wave
elevation (η) patterns to the original is shown in Figs.
11 and 12. The highest resistance reduction, achieved
by the design space 1 (N = 14), can be associated with
a signi�cant modi�cation/reduction of the sonar dome
area (see Fig. 11a) and a reduction of both diverging
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(b) Design space 1, N = 14
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(c) Design space 2, N = 21
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(d) Design space 3, N = 8

Figure 12: Original versus optimized wave elevation patterns.

and transverse stern waves (see Fig. 12b). The opti-
mization results are summarized in Tab. 8.

Finally, Fig. 13 shows the resistance reduction as
a function of the geometric-variance retained by each
design space. Its linear regression (LR) show how the
resistance decreases as the geometric variance increases.
Nevertheless, considering di�erent design spaces, a greater
geometric variability is not always associated with a
greater improvement of the objective function. This
can be justi�ed by the absence of physic-based informa-
tion in the dimensionalty-reduction procedure, which is
based on geometric variables only. It can be also noted
how the FFD search for global optimum with 100 de-
sign variables consumes the entire evaluation budget
without achieving any objective improvement. Never-
theless, its reduced-dimensionality space with N = 14
and almost the same geometric variance achieves the
best design overall, highlighting the potentiality of the
method.
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Figure 13: Linear regression (LR) of the objective improvement
as function of the geometric variance retained by the reduced
design spaces (Ĝ).

Table 8

Optimization results summary in terms of model-scale resis-
tance reduction at Fr = 0.28.

No. evaluations Design space
1 2 3

4 -6.23% -0.05% -3.46%
(N = 1) (N = 1) (N = 1)

1000 -16.5% -4.37% -6.00%
(N = 8) (N = 8) (N = 8)

1000 -16.9% -4.41% -2.96%
(N = 14) (N = 21) (N = 17)

1000 0.00% -3.16% -4.36%
(M = 100) (M = 25) (M = 27)

6. Conclusions and Future Work

A method based on the Karhunen-Loève expansion
has been formulated for the assessment of arbitrary de-
sign spaces in shape optimization, assessing the shape
modi�cation variability and providing the de�nition of
a reduced-dimensionality global model of the shape mod-
i�cation vector. The method is based on the concept
of geometric variance and does not require simulations
and/or design performance analyses. At the continuous
level, the KLE is applied to the continuous shape mod-
i�cation vector, assuming stochastic design variables.
At the discrete level, the problem reduces to the PCA
of a discrete set of geometrical data. Speci�cally, the
KLE problem is formulated in the continuous domain
and reduces to the eigenproblem of an integral operator,
representing a Fredholm integral equation of the second
kind. The discretization of the shape domain (and as-
sociated integral equation) yields the eigenproblem of a
matrix, which appears to be the autocovariance matrix
of the discretized shape modi�cation vector. Finally,
this corresponds to solving the PCA of the discretized
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shape modi�cation vector.
The present work has demonstrated how the method

can be used to assess di�erent design spaces and shape
parameterization methods before optimization is per-
formed and without the need of running simulations
for the performance prediction and/or its gradient. The
method has been further used to reduce the dimension-
ality of design spaces (based on KLE/PCA eigenval-
ues), providing a shape reparameterization using KLE/PCA
eigenmodes. These are �nally used for simulation-based
design optimization, aiming at global optimum.

A demonstration for the hull-form optimization of
the DTMB 5415 model in calm water has been dis-
cussed, where three design spaces were investigated.
These were provided by FFD, RBF, and GMF. With
current settings, FFD, RBF, and GMF design-space di-
mensionality was reduced by 86, 16, and 37%, respec-
tively, allowing for a NMSE of 5% (corresponding to
the 95% of reconstructed geometric variance). Current
results have shown the e�ectiveness of the method in
de�ning e�cient design spaces. Under the assumption
of limited budget of function evaluations (as often en-
countered in SBDO problems), reduced-dimensionality
spaces have achieved, in general, larger objective im-
provements than the original parameterizations. Specif-
ically, the latter have provided 0% (design space 1,
FFD), 3.2% (design space 2, RBF), and 4.4% (design
space 3, GMF) resistance reduction, whereas reduced-
dimensionality spaces have given 17% (design space 1),
4.4% (design space 2), and 6% (design space 3). It is
a notable result that the global optimization algorithm
is not able to provide with any objective improvement
using the original FFD method with M = 100 design
variables. The design-space dimensionality reduction
of the FFD parameterization reduced the number of
design variables to N = 14 and drove the global op-
timizer to the best overall optimum among all cases
studied here (Fig. 13).

In general it may be noted that the geometric vari-
ance is not always proportional to the objective varia-
tion or improvement. Therefore, it is not straightfor-
ward to state (based on the geometric variance only)
whether a parameterization method (with associated
setup) is better than another one or not in the search
for a global optimum. For instance, design space 3 have
provided the highest design variability/feasibility, but
this was not associated to the largest objective improve-
ment, which was achieved by design space 1. These re-
sults show how the process of de�ning an e�cient and
e�ective design-space can be complex and how a proper
de�nition of the shape modi�cation method is always
advisable.

The method presented goes beyond the current ap-
plication and is suitable in all areas where shape design
is of primary importance (such as aerodynamics, struc-
tural, and heat transfer applications), involving com-
plex single- and multi-disciplinary simulations facing

multiple environmental and operating conditions.
Finally, it may noted that signi�cant physical phe-

nomena induced by small shape modi�cations (such as
transitions, separations, etc.) may be overlooked as
no physical information is processed by the method,
which justi�es that retaining a large geometric variance
is not always associated to achieving better objective
function values. The inclusion of physics-based infor-
mation in the dimensionality-reduction formulation has
been presented and discussed in Diez et al. (2016b);
Serani et al. (2017); Serani and Diez (2018b) and part
of ongoing research. Furthermore, linear methods such
as KLE/PCA may not be e�cient when a complex
non-linear relationship between design variables are in-
volved. The extension to non-linear dimensionality re-
duction methods and their e�ects on shape optimiza-
tion have been discussed in D'Agostino et al. (2018a,b),
and D'Agostino et al. (2018c). The use of non-linear
methods with combined geometry and physics-based
data has been presented in D'Agostino et al. (2019);
Serani et al. (2019) and subject of ongoing studies.
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