14 research outputs found

    RNADE: The real-valued neural autoregressive density-estimator

    Get PDF
    We introduce RNADE, a new model for joint density estimation of real-valued vectors. Our model calculates the density of a datapoint as the product of one-dimensional conditionals modeled using mixture density networks with shared parameters. RNADE learns a distributed representation of the data, while having a tractable expression for the calculation of densities. A tractable likelihood allows direct comparison with other methods and training by standard gradient-based optimizers. We compare the performance of RNADE on several datasets of heterogeneous and perceptual data, finding it outperforms mixture models in all but one case.

    Does the Wake-sleep Algorithm Produce Good Density Estimators?

    No full text
    The wake-sleep algorithm (Hinton, Dayan, Frey and Neal 1995) is a relatively efficient method of fitting a multilayer stochastic generative model to high-dimensional data. In addition to the top-down connections in the generative model, it makes use of bottom-up connections for approximating the probability distribution over the hidden units given the data, and it trains these bottom-up connections using a simple delta rule. We use a variety of synthetic and real data sets to compare the performance of the wake-sleep algorithm with Monte Carlo and mean field methods for fitting the same generative model and also compare it with other models that are less powerful but easier to fit

    A survey on generative adversarial networks for imbalance problems in computer vision tasks

    Get PDF
    Any computer vision application development starts off by acquiring images and data, then preprocessing and pattern recognition steps to perform a task. When the acquired images are highly imbalanced and not adequate, the desired task may not be achievable. Unfortunately, the occurrence of imbalance problems in acquired image datasets in certain complex real-world problems such as anomaly detection, emotion recognition, medical image analysis, fraud detection, metallic surface defect detection, disaster prediction, etc., are inevitable. The performance of computer vision algorithms can significantly deteriorate when the training dataset is imbalanced. In recent years, Generative Adversarial Neural Networks (GANs) have gained immense attention by researchers across a variety of application domains due to their capability to model complex real-world image data. It is particularly important that GANs can not only be used to generate synthetic images, but also its fascinating adversarial learning idea showed good potential in restoring balance in imbalanced datasets. In this paper, we examine the most recent developments of GANs based techniques for addressing imbalance problems in image data. The real-world challenges and implementations of synthetic image generation based on GANs are extensively covered in this survey. Our survey first introduces various imbalance problems in computer vision tasks and its existing solutions, and then examines key concepts such as deep generative image models and GANs. After that, we propose a taxonomy to summarize GANs based techniques for addressing imbalance problems in computer vision tasks into three major categories: 1. Image level imbalances in classification, 2. object level imbalances in object detection and 3. pixel level imbalances in segmentation tasks. We elaborate the imbalance problems of each group, and provide GANs based solutions in each group. Readers will understand how GANs based techniques can handle the problem of imbalances and boost performance of the computer vision algorithms

    Does the Wake-sleep Algorithm Produce Good Density Estimators?

    No full text
    The wake-sleep algorithm (Hinton, Dayan, Frey and Neal 1995) is a relatively efficient method of fitting a multilayer stochastic generative model to high-dimensional data. In addition to the top-down connections in the generative model, it makes use of bottom-up connections for approximating the probability distribution over the hidden units given the data, and it trains these bottom-up connections using a simple delta rule. We use a variety of synthetic and real data sets to compare the performance of the wake-sleep algorithm with Monte Carlo and mean field methods for fitting the same generative model and also compare it with other models that are less powerful but easier to fit. 1 INTRODUCTION Neural networks are often used as bottom-up recognition devices that transform input vectors into representations of those vectors in one or more hidden layers. But multilayer networks of stochastic neurons can also be used as top-down generative models that produce patterns with complicated ..

    Does the wake-sleep algorithm produce good density estimators

    No full text
    The wake-sleep algorithm (Hinton, Dayan, Frey and Neal 1995) is a relatively efficient method of fitting a multilayer stochastic generative model to high-dimensional data. In addition to the top-down connections in the generative model, it makes use of bottom-up connections for approximating the probability distribution over the hidden units given the data, and it trains these bottom-up connections using a simple delta rule. We use a variety of synthetic and real data sets to compare the performance of the wake-sleep algorithm with Monte Carlo and mean field methods for fitting the same generative model and also compare it with other models that are less powerful but easier to fit.

    Pulse-stream binary stochastic hardware for neural computation the Helmholtz Machine

    Get PDF
    corecore