26,618 research outputs found

    A Novel Document Generation Process for Topic Detection based on Hierarchical Latent Tree Models

    Full text link
    We propose a novel document generation process based on hierarchical latent tree models (HLTMs) learned from data. An HLTM has a layer of observed word variables at the bottom and multiple layers of latent variables on top. For each document, we first sample values for the latent variables layer by layer via logic sampling, then draw relative frequencies for the words conditioned on the values of the latent variables, and finally generate words for the document using the relative word frequencies. The motivation for the work is to take word counts into consideration with HLTMs. In comparison with LDA-based hierarchical document generation processes, the new process achieves drastically better model fit with much fewer parameters. It also yields more meaningful topics and topic hierarchies. It is the new state-of-the-art for the hierarchical topic detection

    Unsupervised Terminological Ontology Learning based on Hierarchical Topic Modeling

    Full text link
    In this paper, we present hierarchical relationbased latent Dirichlet allocation (hrLDA), a data-driven hierarchical topic model for extracting terminological ontologies from a large number of heterogeneous documents. In contrast to traditional topic models, hrLDA relies on noun phrases instead of unigrams, considers syntax and document structures, and enriches topic hierarchies with topic relations. Through a series of experiments, we demonstrate the superiority of hrLDA over existing topic models, especially for building hierarchies. Furthermore, we illustrate the robustness of hrLDA in the settings of noisy data sets, which are likely to occur in many practical scenarios. Our ontology evaluation results show that ontologies extracted from hrLDA are very competitive with the ontologies created by domain experts

    Graph-Sparse LDA: A Topic Model with Structured Sparsity

    Full text link
    Originally designed to model text, topic modeling has become a powerful tool for uncovering latent structure in domains including medicine, finance, and vision. The goals for the model vary depending on the application: in some cases, the discovered topics may be used for prediction or some other downstream task. In other cases, the content of the topic itself may be of intrinsic scientific interest. Unfortunately, even using modern sparse techniques, the discovered topics are often difficult to interpret due to the high dimensionality of the underlying space. To improve topic interpretability, we introduce Graph-Sparse LDA, a hierarchical topic model that leverages knowledge of relationships between words (e.g., as encoded by an ontology). In our model, topics are summarized by a few latent concept-words from the underlying graph that explain the observed words. Graph-Sparse LDA recovers sparse, interpretable summaries on two real-world biomedical datasets while matching state-of-the-art prediction performance

    Modeling Topic and Role Information in Meetings using the Hierarchical Dirichlet Process

    Get PDF
    Abstract. In this paper, we address the modeling of topic and role information in multiparty meetings, via a nonparametric Bayesian model called the hierarchical Dirichlet process. This model provides a powerful solution to topic modeling and a flexible framework for the incorporation of other cues such as speaker role information. We present our modeling framework for topic and role on the AMI Meeting Corpus, and illustrate the effectiveness of the approach in the context of adapting a baseline language model in a large-vocabulary automatic speech recognition system for multiparty meetings. The adapted LM produces significant improvements in terms of both perplexity and word error rate.
    • ā€¦
    corecore