6,639 research outputs found

    Super Fuzzy Matrices and Super Fuzzy Models for Social Scientists

    Get PDF
    This book introduces the concept of fuzzy super matrices and operations on them. This book will be highly useful to social scientists who wish to work with multi-expert models. Super fuzzy models using Fuzzy Cognitive Maps, Fuzzy Relational Maps, Bidirectional Associative Memories and Fuzzy Associative Memories are defined here. The authors introduce 13 multi-expert models using the notion of fuzzy supermatrices. These models are described with illustrative examples. This book has three chapters. In the first chaper, the basic concepts about super matrices and fuzzy super matrices are recalled. Chapter two introduces the notion of fuzzy super matrices adn their properties. The final chapter introduces many super fuzzy multi expert models.Comment: 280 page

    A Divide-and-Conquer Approach for Solving Fuzzy Max-Archimedean t

    Get PDF
    A system of fuzzy relational equations with the max-Archimedean t-norm composition was considered. The relevant literature indicated that this problem can be reduced to the problem of finding all the irredundant coverings of a binary matrix. A divide-and-conquer approach is proposed to solve this problem and, subsequently, to solve the original problem. This approach was used to analyze the binary matrix and then decompose the matrix into several submatrices such that the irredundant coverings of the original matrix could be constructed using the irredundant coverings of each of these submatrices. This step was performed recursively for each of these submatrices to obtain the irredundant coverings. Finally, once all the irredundant coverings of the original matrix were found, they were easily converted into the minimal solutions of the fuzzy relational equations. Experiments on binary matrices, with the number of irredundant coverings ranging from 24 to 9680, were also performed. The results indicated that, for test matrices that could initially be partitioned into more than one submatrix, this approach reduced the execution time by more than three orders of magnitude. For the other test matrices, this approach was still useful because certain submatrices could be partitioned into more than one submatrix

    Fuzzy Interval Matrices, Neutrosophic Interval Matrices and their Applications

    Full text link
    The new concept of fuzzy interval matrices has been introduced in this book for the first time. The authors have not only introduced the notion of fuzzy interval matrices, interval neutrosophic matrices and fuzzy neutrosophic interval matrices but have also demonstrated some of its applications when the data under study is an unsupervised one and when several experts analyze the problem. Further, the authors have introduced in this book multiexpert models using these three new types of interval matrices. The new multi expert models dealt in this book are FCIMs, FRIMs, FCInMs, FRInMs, IBAMs, IBBAMs, nIBAMs, FAIMs, FAnIMS, etc. Illustrative examples are given so that the reader can follow these concepts easily. This book has three chapters. The first chapter is introductory in nature and makes the book a self-contained one. Chapter two introduces the concept of fuzzy interval matrices. Also the notion of fuzzy interval matrices, neutrosophic interval matrices and fuzzy neutrosophic interval matrices, can find applications to Markov chains and Leontief economic models. Chapter three gives the application of fuzzy interval matrices and neutrosophic interval matrices to real-world problems by constructing the models already mentioned. Further these models are mainly useful when the data is an unsupervised one and when one needs a multi-expert model. The new concept of fuzzy interval matrices and neutrosophic interval matrices will find their applications in engineering, medical, industrial, social and psychological problems. We have given a long list of references to help the interested reader.Comment: 304 page

    Optimizing an Organized Modularity Measure for Topographic Graph Clustering: a Deterministic Annealing Approach

    Full text link
    This paper proposes an organized generalization of Newman and Girvan's modularity measure for graph clustering. Optimized via a deterministic annealing scheme, this measure produces topologically ordered graph clusterings that lead to faithful and readable graph representations based on clustering induced graphs. Topographic graph clustering provides an alternative to more classical solutions in which a standard graph clustering method is applied to build a simpler graph that is then represented with a graph layout algorithm. A comparative study on four real world graphs ranging from 34 to 1 133 vertices shows the interest of the proposed approach with respect to classical solutions and to self-organizing maps for graphs

    Full Issue

    Get PDF

    How Many Dissimilarity/Kernel Self Organizing Map Variants Do We Need?

    Full text link
    In numerous applicative contexts, data are too rich and too complex to be represented by numerical vectors. A general approach to extend machine learning and data mining techniques to such data is to really on a dissimilarity or on a kernel that measures how different or similar two objects are. This approach has been used to define several variants of the Self Organizing Map (SOM). This paper reviews those variants in using a common set of notations in order to outline differences and similarities between them. It discusses the advantages and drawbacks of the variants, as well as the actual relevance of the dissimilarity/kernel SOM for practical applications
    • …
    corecore