4 research outputs found

    On the practicality of global flow analysis of logic programs

    Get PDF
    This paper addresses the issue of the practicality of global flow analysis in logic program compilation, in terms of both speed and precision of analysis. It discusses design and implementation aspects of two practical abstract interpretation-based flow analysis systems: MA3, the MOO Andparallel Analyzer and Annotator; and Ms, an experimental mode inference system developed for SB-Prolog. The paper also provides performance data obtained from these implementations. Based on these results, it is concluded that the overhead of global flow analysis is not prohibitive, while the results of analysis can be quite precise and useful

    Why the occur-check is not a problem

    Get PDF

    SLR inference: An inference system for fixed-mode logic programs, based on SLR parsing

    Get PDF
    AbstractDefinite-clause grammars (DCGs) generalize context-free grammars in such a way that Prolog can be used as a parser in the presence of context-sensitive information. Prolog's proof procedure, however, is based on backtracking, which may be a source of inefficiency. Parsers for context-free grammars that use backtracking, for instance, were soon replaced by more efficient methods, such as LR parsers. This suggests incorporating the principles underlying LR parsing into a parser for grammars with context-sensitive information. We present a technique that applies a transformation to the program/grammar by adding leaves to the proof/parse trees and placing the contextual information in such leaves. An inference system is then easily obtained from an LR parser, since only the parts dealing with terminals (which appear at the leaves) must be modified. Although our method is restricted to programs with fixed modes, it may be preferable to DCGs under Prolog for some programs

    A polymorphic type system with subtypes for Prolog

    Full text link
    corecore