
NORTH - HOI_LAND

SLR INFERENCE: AN INFERENCE SYSTEM
FOR FIXED-MODE LOGIC PROGRAMS,
BASED ON SLR PARSING*

DAVID A. ROSENBLUETH AND JULIO C. PERALTA +

D Definite-clause grammars (DCGs) generalize context-free grammars in
such a way that Prolog can be used as a parser in the presence of
context-sensitive information. Prolog's proof procedure, however, is based
on backtracking, which may be a source of inefficiency. Parsers for con-
text-free grammars that use backtracking, for instance, were soon replaced
by more efficient methods, such as LR parsers. This suggests incorporating
the principles underlying LR parsing into a parser for grammars with
context-sensitive information. We present a technique that applies a
transformation to the program/grammar by adding leaves to the
proof/parse trees and placing the contextual information in such leaves.
An inference system is then easily obtained from an LR parser, since only
the parts dealing with terminals (which appear at the leaves) must be
modified. Although our method is restricted to programs with fixed modes,
it may be preferable to DCGs under Prolog for some programs.
© Elsevier Science Inc., 1998 <1

1. INTRODUCTION

A motivation for the development of Prolog was that of having a programming
language for natural-language applications. Hence it is no coincidence that Prolog
programs resemble context-free grammars. This resemblance suggests the possible

*A previous version of this paper was presented at the International Logic Programming Sympo-
sium, Ithaca, NY, 1994.

tCurrent address: Department of Computer Science, University of Bristol, Merchant Venturers
Building, Woodland Road, Bristol BS8 1UB, U.K.

Address correspondence to David A. Rosenblueth, IIMAS, UNAM, Apdo, 20-726, 01000 M6xico
D. F., Mexico, Email: drosenbl@servidor.unam.mx.

Received July 1995; revised April 1996; accepted January 1997.

THE JOURNAL OF LOGIC PROGRAMMING
© Elsevier Science Inc., 1998
655 Avenue of the Americas, New York, NY 10010

0743-1066/98/$19.00
PII S0743-1066(96)00076-9

228 D. A. ROSENBLUETH AND J. C. PERALTA

transfer of results between logic programming and formal-language theory. We
study an inference system based on LR parsing meant for "fixed-mode" logic
programs, where each argument in a predicate acts either as input or as output of
an operation, and input arguments are ground. (This paper is an extended version
of [26]: we have added formal proofs, a discussion comparing the search space
under the proposed inference techniques with the SLD tree, and more compar-
isons with related work.)

Prolog's proof procedure can be viewed as a generalization of a simple parser
with backtracking. In practical applications, such a parser has been replaced
by more sophisticated methods, such as LR parsers [2]. The reasons are that
the backtracking parser not only falls easily into nonterminating loops, but is
inefficient.

Prolog's proof procedure suffers from the same defects as the parser on which it
is based. This phenomenon has prompted the development of other, more sophisti-
cated proof procedures for logic programs. In spite of the resemblance between
logic programs and context-free grammars, there are few proof procedures based
on parsers [8, 17, 18, 23]. We find this contrast puzzling because logic programs can
naturally represent context-free grammars, e.g., using well-known difference-list
techniques. The difference-list representation of a context-free grammar associates
a production

A ~ B 1B 2 "'" B n

with the clause

a (X o , Xn) +-- b l (X o , X l) , b2 (Xl , X2) bn(Xn_ 1 , Xn) . (1.1)

In addition, this representation has a clause of the form

c ' ([c l X] , X) + (1.2)

for each terminal c of the context-free grammar.
The problem, then, is how to generalize logic programs that represent context-

free grammars with clauses of the form (1.1) to include contextual information.
Definite-clause grammars (DCGs) [22] do so with additional argument places. In
contrast, we try to keep the "chain" form of clause (1.1) and add the contextual
information only to unit clauses (1.2). As we will see, this generalization allows us
to adapt an LR parser with minor changes, since only the part dealing with
terminals must be modified.

A drawback of our approach, however, is that Prolog programmers normally
do not write programs in chain form. Hence we use a transformation taking a
fixed-mode DCG and producing a logic program of the desired form. The resulting
program is a logical consequence of an extension of the original program. This
transformation essentially adds leaves to the parse /proof trees and places the
contextual information in such leaves. (We have already used this transformation
in [25], for developing inference systems based on "chart" parsers.) In fact, the
original program may not necessarily be a DCG; it may be an arbitrary fixed-mode
logic program.

At first sight it might seem that our limitation to fixed-mode logic programs is
severe. It can be argued, however, that this is not the case. Drabent [1l], for

SLR INFERENCE 229

instance, claims that the majority of practical logic programs have fixed modes, and
shows examples of programming techniques in which multiple modes are used.
Fixed-mode logic programs have also been studied in [3, 4, 10].

2. SLR PARSING

This section reviews SLR parsing [2]. We have selected an SLR parser as the basis
for our inference system because such a parser illustrates various aspects of LR
parsing without being so elaborate as to obscure the presentation of our method.
We believe, however, that any LR parser can be converted into an inference system
in a similar way.

We use the letter A for nonterminals, the letter B for either terminals or
nonterminals, and the letter c for terminals. As usual, Greek letters denote strings,
and $ is an end marker. By I o~1 we denote the length of a.

As [2], we assume a context-free grammar in which there is only one production
S' - ->S with the start symbol S' on the left-hand side. We denote the set of
nonterminals with N, the set of terminals with T, and the set of productions with
R. For simplicity, we assume that grammars do not contain epsilon productions.

Before giving a formal explanation of SLR parsing, we will give an intuitive idea
[14] behind this parsing method. Suppose that we are constructing a derivation in
reverse, that is, from the string generated by the derivation to the start symbol.
Assume also that the current string has the form B 1 .. . BiBi+lC~$, where the suffix
Bi+ a c~ $ represents the part of the string that we have not yet read. In addition, all
possible reductions have been made at the prefix B 1 ... B i of the string, so that the
right boundary of the handle (substring corresponding to the right-hand side of a
production) must be at position B n for n > i. If n > i, then we must continue
reading symbols of the input string (Figure la, shift) until n = i (Figure lb, reduce),
in which case we have found a handle and can reduce by a production.

Next we give a definition of an SLR parser. Following [2], we define an i tem as a
production in R augmented with the meta-symbol "-" occurring on the right-hand
side of that production. Given a set R of production., and a set I of items for R,

/

/ '

'".,,.

01 /" ,~
//,¢ ",

, Bi /\ '".,
• " " / \ ",

\ " , ,

Bi+a
(a)

FIGURE 1. Shift and reduce cases.

, /" , ,

,/ 'L,,,

: '..
.., L.

/,'
nl ,,," ",,,

Bi /\\

..L
Bi4-1 (b)

230 D . A . R O S E N B L U E T H A N D J. C. P E R A L T A

the closure of I, c l o s u r e (l) , is the smallest set such that

1. q ~ c l o s u r e (I) if q ~ I
2. (A 1 --* ° y) ~ c l o s u r e (I) if (A a --* y) ~ R and (A 0 ~ a o A 1 [3) ~ c losure (I) .

We use • to denote the set of all items for a set of productions, and 2 x to
denote the power set of X. A function goto from 2 J × (N U T) to 2 J is defined in
[2] a s

go to (I , B) = c losure ({ A ~ a B ° f l : (A ~ aoB[3) ~ I }) .

We also need a function f o l l ow from N to 2 T v ($}, which is defined as

f o l l ow (A) = { c : c ~ T and S ' *~ a A c [3 } td { $: S ' * a A } .

A n L R s tack is an alternating sequence of sets of items and g rammar symbols.
Let G be a context-free grammar and a =ClC 2 " ' " CnCn+ 1 an input string, where
Cn + 1 = $" A conf igurat ion for G and a is an ordered pair consisting of an LR stack
and a suffix of the input string inductively defined as

1. (base case) (c l o s u r e ({ S ' ~ oS}), ClC 2 "'" CnCn+ 1) is a configuration, which we
call an init ial configuration.

2. (shift) If
(a) (I o B I I I B 2 I 2 .. . B k I e, cici+ 1 "'" CnCn+ 1) is a configuration,
(b) there is an item (A ~ a o c i f l) e l k, and
(c) g o t o (I k, C i) = J,
then (I o B 1 1 1 B 2 I 2 . . . B k l k C i J , ci+ 1 "" cncn+ 1) is also a configuration.

3. (reduce) If
(a) (I o B 111B e 12 .. . B k I k, c i . . . c , c a + 1) is a configuration,
(b) there is an item (A ~ a°) ~ I k,
(C) C i ~ f o l l o w (A) ,
(d) A ~ S ' , and
(e) g o t o (I k I-I, A) = J ,
then (I 0 B 111B 2 1 2 " ' " B k_l~ I Ik t-I AJ ' ci "'" Cn C~ + 1) is also a configuration.

As observed in [2], the grammar symbols in an LR stack are redundant. In [2],
such symbols are used for explanation purposes; for us, they are helpful in the
soundness and completeness proofs of our inference system.

Notice that it is possible that for some configurations both the shift and the
reduce rules be applicable. In addition, it may be possible to apply the reduce rule
using more than one production. These situations are sometimes called confl icts .
Traditionally, when a conflict arises, either the grammar is changed, or the look
ahead of symbols is considered. Lang noted [16], however, that any context- free
g r a m m a r can be parsed with an L R parser i f we regard a conf l ic t as a nonde termin is t i c
choice po in t . This fact is important for us, since we will use Prolog's backtracking to
handle conflicts.

This description of SLR parsers is useful for proving some of their properties. In
a practical SLR parser, however, we would precompute all sets of items that can
occur in any configuration, as well as all of the values that f o l l ow and goto can
have. From these values, the so-called pars ing table is constructed.

SLR INFERENCE 231

3. CSLR INFERENCE: AN INFERENCE SYSTEM FOR CHAIN PROGRAMS

In this section, we will incorporate "matching" (one-way unification) to the SLR
parser to obtain an inference system.

3.1. C S L R Inference

We define a chain program as a logic program consisting only of clauses of the form
(1.1) and c(t, t ') ~ , where var(t')___ var(t), in which no predicate symbol appears
both in the head of a nonunit clause and in a unit clause. Here and throughout the
paper, var(t) denotes the set of variables occurring in t. We define a chain goal as a
goal of the form ~ s(x, Z), where x is a ground term and Z a variable.

In a chain program the set of predicate symbols appearing in the head of
nonunit clauses is disjoint with the set of predicate symbols appearing in unit
clauses. This restriction is only meant to facilitate obtaining the inference system
from the parser. (In [26] we did not impose this constraint, but we had to make
various changes to the parser, apart from the addition of matching; for instance, we
had to modify the definition of follow with respect to that of [2].) This is not a
serious restriction, since it can be satisfied by the addition of predicates.

The similarity between the usual difference-list representation of context-free
grammars and chain programs is evident. Only at the level of unit clauses do we
find that arguments in chain programs are a generalization of the difference-list
representation of terminals. However, if we add matching, SLR parsing techniques
apply to this case as well. We will show that this extension of SLR parsing provides
a sound and complete inference system for this class of program. To make this
extension explicit, we will first transform the clauses of a given chain program into
context-free production rules by dropping the arguments. Next, we will add
matching to the treatment of terminals.

With a chain program P, we associate a set R e of productions as follows. We
first associate a nonterminal A with each predicate symbol a appearing in the head
of a nonunit clause, and we associate a terminal c with each predicate symbol c
appearing in a unit clause. In addition, R e has a production of the form

A ~ B 1B 2 " " B n n > 0

for each clause in P of the form

a (X o , X ~) ~ b l (X o , X 1) , b z (X a , X 2) b ~ (X . _ I , X .) n > O .

Let P be a chain program, G = ~ s'(x, Z) a chain goal in which s ' is a predicate
symbol occurring in the head of only one clause of P, and R e the set of
productions associated with P. A clausal configuration for P tg {G} is an ordered
pair consisting of an LR stack and a ground term, inductively defined as

1. (base case) (closure({S' ~ oS}), x) is a clausal configuration, for all ground
terms x, which we call an initial clausal configuration.

2. (shift) If
(a) (IoBlI1B2I 2 ... B~I~,y) is a clausal configuration,
(b) there is an item (A ~ ~°c/3) ~ Ik,
(c) goto(I k, c) = J, and

232 D. A. ROSENBLUETH AND J. C. PERALTA

(d) there is a clause (c(t, t ') ~) ~ P such that y = tO for some substitution 0,
then (I o B 111B 212 ... B k I k c J, z), where z = t '0 , is also a clausal configuration.

3. (reduce) If
(a) (I 0 B 111B 212 " '" B k I k, y) is a clausal configuration,
(b) there is an item (A ~ a -) EIk ,
(c) i. there is a clause (c(t, t ') ~) ~ P such that y = tO for some substitution

0 where c ~follow(A); or
ii. $ ~follow(A),

(d) A v~ S' , and
(e) goto(I k j~I,A)=J,
then (I o B 111B 212 ..- B~_I, I lk-lo I A J, Y) is also a clausal configuration.

We call (loSIl,z) a final clausal configuration, where (S ' ---, S -) ~ I 1, and z is a
ground term.

Note that the definition of clausal configuration can be viewed as an inference
system, which we will call CSLR inference (where the C stands for chain programs).
Observe also that, except for conditions (2d) and (3c), a clausal configuration is
essentially the same as a configuration. In fact, we first arrived at our inference
system fortuitously by implementing an SLR parser in Prolog using difference lists,
and later discovering that arbitrary ground terms could be used instead of lists.

CSLR inference can be viewed as an instance of a "general resolution scheme"
discussed in [10, pp. 53-54] by Deransart and Matuszyfiski. Such schemata con-
struct proof trees of a program by interleaving construction of context-free parse
trees with unification of the equations originating from the constructing tree. It is
clear that CSLR inference combines construction of the parse trees of the
underlying context-free grammar (see Figure 1) with unification of the arguments.
Because of the chain nature of the program, unification reduces to argument
passing, except for the leaves of the tree, where unification reduces to matching.
CSLR inference is in fact a "full resolution scheme" as defined in [10, pp. 55-56].

3.2. Soundness and Completeness o f CSLR Inference

3.2.1. Soundness of CSLR Inference

To prove soundness of CSLR inference, we first need to establish a correspon-
dence between clausal configurations and sets of definite clauses.

With an item

q =A -oB 1 " '" B i _ l O B i " " B,,,

together with a list [Xo,X 1 x~] of ground terms, where k > i - 1, we associate
the clause

cl(q, [Xo,X I ,xk]) =

a(xk-i+ l, Xn) + bi(Xk, Xi) , hi+ 1(X / , Xi+ 1) bn(Xn-1, Xn)"

With a set I of items, together with a list [x0,x 1 x k] of ground terms, we
associate the following set of clauses:

cl(I, [x0 ,x l , . . . ,x k]) = {cl(q, [x0,x 1 x k]) : q ~ I}

SLR INFERENCE 233

With a clausal configuration

c = (I o B l l I B 2 1 2 "" Bk/k,Xk),

together with a list [x 0, x 1 , x k] of ground terms, we associate the following set of
clauses:

¢ l (C , [x o , x ~ , . . . , x ~]) =

cl(Io, [Xo]) U cl(I1, [Xo,Xl]) U ..- U cl(Ik, [Xo,X 1 Xk])

(-J { b l (X o , X l) ¢ - , b 2 (X l , x 2) (- bk(xk_l ,Xk) (-- }.

NOW we need a property of SLR parsers.

Lemma 3.1. Let C = (I o ... Bklk ,x) be a clausal configuration. I f (A ~ ~ . [3)~ Ii,
then (A ~ . a ~) c l i _ l ~ I for all i = O k.

PROOF. By induction on the number of steps in the construction of C. []

Lemma 3.2. Let C = (I 0 ""Bklk ,X) be a clausal configuration. I f (A ~ aofl) ~ Ik,
then a = B k _ l a l + 1 -.- B k .

PROOF. By induction on the number of steps in the construction of C, using
Lemma 3.1. []

Next, we can establish the soundness of the shift and reduce rules.

Lemma 3.3 (Soundness of shift). Let P be a chain program, C 1 = (I 0 "" Bk[k,X) a
clausal configuration for P U { ~- s'(xo, Z)}, and [Xo,... , x k] a list of ground terms.
Assume that conditions (a) - (d) of the shift rule hold and let C 2 = (I o "'"
BkikCJ, Xk+ 1) be the clausal configuration resulting from applying the shift rule.
Then

e u cl(C~, [Xo x~]) ~ ct(C~, [Xo x~ ,x~+~]) .

PROOF. We have to prove that

n u cl(C~, [Xo , , ,~]) ~ cl(j , [Xo x~, x~+~]) u (c (x~ ,x~+~) ,--).

By condition (d), C(Xk,Xk+l)~ is an instance of a clause in P. Hence P ~
(c(xk,xk+ 0'--).

Using resolution, with input clauses C(Xk,Xk+ 1) ~ and clauses of the form
cl(A ~ a-C/3,[X0,. . . ,Xk]) , where (A -* a * c [3) e l k , we can derive all clauses of
the form cl(A --* ac°/3,[x 0 ,Xk,Xk+l]), where (A ~ a c ° f l) ~ J .

Using instantiation, we can derive the rest of the clauses in cl(J,[x o ,
Xk,Xk+ 1]), which are of the form cl(A' ~ °y,[x0, . . . ,Xk,Xk+l]) .

We conclude that the lemma holds. []

Lemma 3.4 (Soundness of reduce). Let P be a chain program, C 1 = (I o ... Bklk ,x k)
a clausal configuration for P U { ~ s ' (x 0 , Z) } , and Ix 0 x k] a list of ground
terms. Assume that conditions (a) - (e) of the reduce rule hold and let C 2 = (I o ...
Bk_l~llk_l~lAJ, x k) be the clausal configuration resulting from applying the reduce

234 D . A . R O S E N B L U E T H A N D J. C. P E R A L T A

rule. Then

e u c l (C l , [X 0 ,Xk]) ~c l (C2 , [x 0 x k l a l , X k]) •

PROOF. We have to prove that

P U cl(C1, [x 0 x~]) ~ cl(J , [x 0 xk_l~l,x k]) U {a(xk_l, l ,x k) ~ }.

By condition (b), there is an item (A --9 c~°) ~ I k. By Lemma 3.2, c~ = Bk_l~l+ 1 "'"
B k. So, there exists a clause

[a (X k - i , l , X k) ~bk- i~ l+l (Xk- i~ l ,Xk- i~ l+l) ,bk(X k _ , , X k)] ~ P .

Hence, by instantiation and modus ponens,

P U { b l (X 0 , X 1) ~-- bk(Xk_ 1,xk) ~ } ~ a(xk_l,l ,Xk)

Using resolution, with input clauses a(xk ic~l,Xk)~ and clauses of the form
cl(A' ~ aoAf l , [x o ,xk_l~l]) , where (A ' ~ a ° A f l) ~ I k _ l , I, we can derive all
clauses of the form cl (A ' ~ aA° f l , [x o ,Xk_l~l,Xk]), where (A ' ~ a A ° f l) ~J .

Using instantiation, we can derive the rest of the clauses in cl(J,[x o
Xk_l~l,Xk]). The derived clauses are of the form cl(A" ~ °y,[x 0 Xk_l~p,Xk]).

We conclude that the lemma holds. []

We can now state the soundness of CSLR inference.

Theorem 3.1 (Soundness of CSLR inference). Let P be a chain program. I f (IoSI l, z)
is a final clausal configuration for the initial clausal configuration (I o, x), then
P ~ s'(x, z), for any ground term x.

PROOF. By induction on the number of steps in the construction of (IoSI 1, z), using
Lemmas 3.3 and 3.4. []

3.2.2. Completeness of CSLR Inference

Finally, we give a completeness result, which states that the search space contains
all correct answers. We will proceed in a manner similar to that used in [10, pp.
59-60] and [31].

Let P be a logic program. A closed proof tree for P is a finite tree of atoms such
that for all nodes

1. there is a unit clause (A' ~) ~ P and a substitution 0 such that A - A ' O and
A has no children, or

2. there is a clause (A ' * - - B 1 B n) ~ P and a substitution 0 such that
A =A'O and B 10 , B n 0 are the children of A.

Lemma 3.5 (Clark [7], St~irk [31]). Let P be a logic program and A a ground atom. I f
P ~ A , then there exists a closed proof tree for P with root A.

Theorem 3.2. Let P be a chain program, and w, x, and z be ground terms. Let
C a = (I 0 " " Bk l k , x) be a clausal configuration for P U { ~ s ' (w , Z) } such that
(A --* oB'IB' 2 . " B' n) ~ I k. Let J =goto(lk_n, A). I f P ~ a(x, z), then C 2 = (Io . . .
B k I~ A J, z) is also a clausal configuration for P U { ~ s'(w, Z)}.

SLR INFERENCE 235

PROOF. The proof is by induction on the number r of nodes of the closed proof
tree T with root a(x, z).

Basis: T has exactly two nodes, because the set of predicate symbols associated
with terminals is disjoint with the set of predicate symbols associated with non-
terminals. In this case, there exist clauses (a(Xo, X1),---b'l(Xo, X l)) ~ P and
(b ' l (t , t ') * - -) ~ P , where a corresponds to a nonterminal, and b'l to a terminal; in
addition, (b ' l (t , t '))O-b ' l (x , z) . Viewed in terms of CSLR inference, we can shift
the symbol B' 1 obtaining the clausal configuration (I 0 ..- B k I k B' 1I k + 1, z). Because
(A ~ B ' l °) ~ I k + l , we can then reduce by the production A ~ B ' 1 and yield the
clausal configuration C 2 = (I o ... B k I k A J, z).

Inductive step: Next, suppose that the result holds for closed proof trees of r ' < r
nodes. Let the children of a(x,z) be b'l(x,y 0, b~(yl,Y2),..., b'~(y~ 1,z) in order from
the left.

If b' 1 corresponds to a terminal, we can shift B' 1 to obtain (I 0 -.. BklkB ' l l k+l ,y l) ,
where (A ~ B'loB' 2 ... B'~) ~ Ik+ 1. If b' 1 corresponds to a nonterminal, we can apply
the induction hypothesis for a closed proof tree with root b'l(x, yl), which asserts
that if C 1 = (I 0 . . -Bklk, X) is a clausal configuration for P U (~ s'(w, Z)} such that
(B' 1 ~ oB~' ...) ~ Ik, then C 2 = (I 0 ... BklkB' l lk+ ~,Yl) is also a clausal configuration

¢ t t for P U (s (w, Z)}. Note that also in this case (A ~ B 1-B 2 " ' " B',) ~ I k + 1-
We can now construct the clausal configuration

(I o "" BklkB' l lk+ ,B'2Ik+ 2 ... B'nlk+~, z),

such that (A ~ B ' 1 B ' 2 ... B ' , .) ~ I k + n as follows. For i = 2 n, we apply the shift
rule if b~ corresponds to a terminal, or the induction hypothesis if b~ corresponds
to a nonterminal.

Finally, we can apply the reduction rule, to obtain the clausal configuration
(I o ... B k I ~ A J , z). We conclude that the theorem holds. []

Corollary 3.1 (Completeness of CSLR inference). Let P be a chain program. I f
P ~ s ' (x , z) , where x and z are ground terms, then (IoSI l ,Z) is a f inal clausal
configuration for the initial clausal configuration (I o, x).

4. TRANSFORMING FIXED-MODE PROGRAMS INTO CHAIN FORM

This section deals with our transformation for converting fixed-mode logic pro-
grams into chain form.

4.1. O v e r v i e w o f the T r a n s f o r m a t i o n

In looking for a class of program transformable into chain form, we would like, of
course, to find a class as large as possible. "State-oriented" (imperative) programs
might give us a guide as to which programs are transformable, for two reasons:

1. Various authors have observed [5, 12, 20, 27] that a state-oriented program
can be regarded as a context-free grammar together with an interpretation
representing primitive commands as terminals. Such a view is closely related
to the concept of chain program.

236 D. A. R O S E N B L U E T H AND J. C. P E R A L T A

2. Clark and van Emden have described [6] flowcharts (a kind of state-oriented
program) with chain logic programs, in such a way that a flowchart and its
associated logic program define the same set of computations.

Hence, state-oriented programs in general, and flowcharts in particular, must
have certain properties that make them suitable for being represented by chain
programs.

A first conspicuous property is that during execution, boxes in a flowchart are
"traversed" in only one direction, from their input toward their output. This
suggests limiting ourselves to logic programs in which each predicate has only one
"mode," i.e., each argument place is used either as input (instantiated) or as output
(uninstantiated), but not both. Another property of flowcharts is that the output of
a box is never connected to the output of another box. Hence we will exclude
clauses in which a variable occurs as output in more than one subgoal. We will add
a third condition, which is only meant to simplify both stating our transformation
and proving it correct.

A clause

po(to,t'n) ~pl(t~, t l) ,p2(t ' l , t2) Pn(t'n_l,t,) n>_O

is called fixed-mode if

1. var(t~) _ var(t 0) tA ... U var(ti), for i = 0 , n;
2. var(ti) N var(tj) = Q, for i, j = 0 , n and i ~ j ; and
3. each variable occurring in t~ occurs only once in t~, for i = 0 n, if n > 0.

We define a fixed-mode program as a logic program consisting only of fixed-mode
clauses. A goal is called fixed-mode if it is of the form ~ s(x, Z), where x is a
ground term and Z is a variable.

Condition 1 constrains the "flow of data" [4] from the inputs toward the outputs,
if subgoals are selected in a left-to-right order. When a subgoal succeeds, condition
2 causes the constructed term to have an effect only on the input of other subgoals.
Condition 3 is included with no loss of generality, since it can be easily satisfied as
follows. Note first that unit clauses that satisfy condition 1 are already in chain
form. Hence there is no need to impose further constraints on such clauses, so that
condition 3 only refers to nonunit clauses. Thus a clause of the form

p(to, (X , X}) ~ q(ti, (X }) ,

for example, which has two occurrences of X in t' n, can be replaced by

p (t 0, (X ' , X")) ~- -.., q(ti, (X }) , e ((X } , (X ' , X" }) , . . .

e ((X) , (X , X)) ~ .

At first sight, fixed-mode programs may appear too constrained for practical
purposes, because sometimes the same Prolog predicate can be used in multiple
modes. Often, however, obstacles appear when a predicate is used in this manner.
For instance, an infinite branch to the left of an answer in the SLD tree will
prevent Prolog from finding such an answer. Even if all branches are finite, the
execution of certain modes may be intolerably inefficient. Other obstacles to the
invertibility of logic programs are the use of built-in predicates and the lack of

SLR INFERENCE 237

occur check. As a consequence, many practical Prolog programs use each predicate
in a single mode. We refer the reader to [3, 4, 10, 11] for arguments in favor of
fixed-mode programs.

Example 4.1. We will introduce our transformation through the following fragment
of a DCG:

expr(p(E, F)) ~ expr(E) , plus, expr(F) (4.1)

plus ~ [+ 1. (4.2)

Clauses (4.1) and (4.2) are a shorthand for

expr(p(E, F) , Xo , X3) ~ expr(E, Xo, X1) , plus(X~ ,) (2) ,expr(F, X2 , X3)

(4.3)

plus([+ [Xs], Xs) ~ . (4.4)

Assume a goal of the form ~ expr(Expr,[a, +,b],Rest), in which the second
argument place is used as input, and the first and third argument places are used as
output.

As a first step to obtaining chain clauses, we rewrite clause (4.3), grouping some
input and output argument places as

expr' (< Xo), < X3, P(E1, F3))) ~--

expr ' ((Xo) , (X1,E~)) ,p lus((X~) , (X2)) ,expr ' ((Xz) , (X3,F3)) , (4.5)

to have binary predicates. The angled brackets () are used instead of ordinary
brackets [] for grouping input and output arguments.

The next step in obtaining chain clauses would be to convert the arguments that
are not variables into variables. Note that if it were not for the fact that E~ occurs
both in the output of the head and in the output of the first subgoal,

expr'((Xo), (X3,p(~--~,F3)}) ~

expr ' ((Xo),(X~,~-q])) ,plus((X~),(X2)) ,expr ' ((X2),(X3,F3)), (4.5)

we would be able to "fold" the definition of a predicate, such as

g((X3, F3), (X3, P(E1, F3))) ~ ,

converting the underlined terms into variables as follows:

expr' ((X o), U~) ,--

expr'((Xo), (X1, ~-~)), plus((X1), (X2)) , expr'((X2), U3), g(U3, U~).

(4.6)

As observed by Tamaki and Sato [32], in general it is incorrect to fold a
definition such as that of g in a clause that has a variable such as E 1, which also
occurs in the output of the first subgoal. To see this, unfold the definition of g in
(4.6) and observe that a generalization of (4.5) is obtained.

238 D. A. ROSENBLUETH AND J. C. PERALTA

For us, the occurrences of E 1 in (4.5) are reminiscent of procedure calls in
state-oriented programs, in the sense that the value of E l is not "required" by the
second or third subgoals, but is used later in the computation to construct the
result of the whole clause (the term (X3 ,p (EI , F3))). Procedure calls are some-
times implemented with a stack storing the values of the variables required after
the call is executed. "Interruptions" are often implemented in this manner. This
suggests adding a term to the predicates which plays the role of such a stack.
This stack would store the value of E 1 in the first subgoal, until used by the
head, at which point this value is recovered with a different name E3:

-~pr((Sto, Xo), (St3, X3, P(~--~ ,F3)))

 (<Sto,Xo>, <stl,xl, g3>),

plus(([E, I St 1], X 15, ([E 2 [St 2], X 2 5),

expr(([E 2 I St2], X2), ([E 3 I St3] ,)(3, F3)). (4.7)

With appropriate definitions for expr and plus, it is possible to transform (4.5) into
(4.7) through fold and unfold steps [24].

We can now fold the following definition of h3:

h3(([E3 I St3], X3, F3), (St3, X3, p(E3, F3)))

and get:

expr((St o , X0), U~) ~ expr((Sto , Xo), (St , , X , , E 1)),

plus(([E1 [St,], X 1), ([E 2 [St 2], X 2)),

expr(([E2 [St2], X2), O3),

h3(U3,V~).

If we take the completed definition [19, p. 78] of h3, then this step preserves all
models of the program augmented with the standard equality theory. This can be
proved by using, for example, the result in [29, pp. 57, 58].

Similarly, folding the definitions of h 0, h 1, and h2:

ho((Sto, Xo), (St0, X0)) ¢---

hx((Stl, X 1 , El), ([El [St1], X l)) ~--

h2(([E2 [St2], X2), ([E 2 [St2], X 2)) +'- ,

we obtain

expr(U o , V~) ~ h0(U 0 , U~),expr(U~, /_I1),

hl(U1, U;) , plus(Uf , U:) ,

h2(V2, U~) , expr(U~ , U,), h 3 (U 3 , U~), (4.8)

which has chain form. Now the contextual information appears only at the added
leaves of the pa r se /p roof trees.

SLR INFERENCE 239

Observe that h 0 denotes a subset of the identity relation, so that this predicate
does not change the state of the computation. This suggests the possibility of
deleting the subgoai with such a predicate symbol and renaming variables so that
chain form is preserved. We will show that the program resulting from this deletion
is a logical consequence of the completion of the original program, together with
the standard equality theory. We will also see that this operation may not be sound
in general, and will give a sufficient condition for its soundness.

4.2. Transformation

In practice, it may not be convenient to transform a program with fold and unfold
operations. The chain form of a fixed-mode program can be obtained in a more
straightforward manner based on the following theorem. A proof sketch appears in
[25], and so we do not repeat it here. Such a sketch proof is not difficult, and it
essentially follows the same steps we followed for Example 4.1.

Theorem 4.1. Let C be a fixed-mode clause:

t <___ t t p po(to, t .) P l (to , t l) ,p2(t , , t2) p . (t . _ l , t .)

and let

n>O

1 I i = (var(to) U ... U var(t i 1)) n (var(t~) U ... U var(t'~))

i = 0 n + l

Then the clause C,

#o(Uo, U;) <- ho(Uo, U~), #,(Ud, U,), hi(U,, U(),/~2(U/, U2) , . . . ,

hn_l(Un_,,U'_l),Pn(Un_,,Un),hn(Un,U'),

is logically implied by C, the standard equality theory, the "iff" version of the
function substitutivity axiom for the list-constructor function symbol:

[X I Y] = [X ' I Y '] (-) X = X ' & y = y ' ,

the definitions of the fi's:

f i i ({ S t l X) , (S t ' IV)) , ~ S t = S t ' & p i (X , Y) i = O , . . . , n ,

and the completed definitions of:

hi((~,i l t i) ,(~i+ 1 It;)) ~ i = 0 n,

where ~i is any list of the form [X1, i Sa,,i l St], such that {X1, i Xa,,i} = Hi,
/f IIi ¢ Q, and ~i is S t i f l~i=Q~ , f o r i = O n + l .

Each predicate with the predicate symbol h i above will be called an h-com-
mand. Each^subgoal of an h-command will be called an h-subgoal. We define the
chain form Pc of a fixed-mode clause C as the clause C produced by Theorem 4.1,
together with the definitions of the h-commands in definite-clause form (as
opposed to their completed definitions). We also define the chain form ff of a
fixed-mode program P as the chain form /~c of each clause C in P, having no
h-command in common with the chain form of other clauses in P.

240 D. A. R O S E N B L U E T H A N D J. C. P E R A L T A

Let us apply Theorem 4.1 to clause (4.5) of Example 4.1:
P0

expr' {xo> (X s , p (E 1 , F 3) > ~

t o t ' 3
Pa

<Xo> expr' (.._...~_ , < Xl , El > } ,

t~ t 1
P2 P3

t i t2 t l t 3

17i is the set of variables that receive a substitution in the output of a subgoal to
the left of the subgoal with predicate symbol Pi or in the input of the head, and
that occur in the input of a subgoal to the right of the subgoal with predicate
symbol Pi or in the output of the head.

Hence H i is the set of variables in the stack of the subgoal with predicate
symbol Pi:

II o = Q n (var(t~) U var(t'a) u var(t~) U var(t~)) = 0

YI 1 = var(t0) n (var(t]) U var(t[) U var(t~)) = Q

17 2 = (var(to) U var(t l)) • (var(t[) U var(t~)) = {El}

II 3 = (vat(to) U var(ta) U var(tz)) N var(t~) = {El}

II 4 = (var(t0) U var(/1) U var(t2) U var(t3)) n O = O.

So,

~i, o = "Z 1 = S t , "Z2 = ~,3 = [Ea l St], ~4 = St .

The clause in chain form is (4.8). The definitions of the hi's are as before, up to
variable renaming:

ho(<St , Xo> , (S t , Xo>)

h1(<St, XI, El>, <[E 1 l St], XI>) <--

hz(([E~ ISt],X2>, ([E1 ISt],X2>) +-

h3(([E1 I St], X3, F3>, < St, X3, p(E1, F3) >) +-.

Theorem 4.1 associates a chain program /~ with a fixed-mode program P in
such a way that /~ is a logical consequence of a conservative extension of P. The
implication in the other direction also holds. That P is logically^implied by a
conservative extension of /6 can be seen by resolving the clauses in P first with the
definitions of the hi's and the/~i's, and then with reflexivity.

5. SOME PROPERTIES OF SLR INFERENCE

Having presented CSLR inference, we will now couple such an inference system
with our transformation for converting fixed-mode programs into chain form: This
coupling can be regarded as producing a new inference system, because the
transformation can be described in terms of fold and unfold operations. So, this
new inference system has additional inference rules that are applied (at compile
time) before the shift and reduce rules of CSLR inference.

SLR INFERENCE 241

We will first observe that the length of a refutation using CSLR inference on a
program resulting from our transformation has a number of steps that is propor-
tional to the length of the corresponding SLD refutation of the original program.
This system will be called hSLR inference.

Finally, we will remark that under certain conditions, it is possible to remove
some subgoals of predicates that manipulate the stack added by the transformation
(h-subgoals), thus producing a search space smaller than that of SLD resolution.
The removal of such subgoals can also be described in terms of fold and unfold
operations, so that another inference system is obtained: SLR inference.

5.1. A Comparison of Search Spaces

Example 5.1. As an example, consider the usual definition of append, but used for
splitting lists. The predicate ap((Z), (X , Y)) is intended to hold if Z can be split
into X followed by Y:

ap((Z),([] ,z)) ,-
ap(([WI Z]) , ([WIX], Y)) ,--- ap((Z) , (X , Y)) .

The chain program produced by our transformation is

ap(Uo, U~) ~ ho(Uo, U~)

ap(Uo, U;) ~ h~(U o , U~),ap(U~, Vm) , h2(Ul, U;)

ho((St, Z) , (St,[] ,Z)) ~-

hl((St, [W] Z]) , ([WI St], Z)) *--

h2(([WI St], X , Y) , (St, [W I X] , Y)) ~- .

The context-free grammar associated with the above chain program is

(0) S ' -~A

(1) A ~ h 0

(2) A ~ h a A h 2.

Next, we compute the sets of items:

I 0 = {S' ~ o A , A ~ ° h o , A ~°h lAh2}

11 : { S' ~ Ao}

I 2 = {A ~ h l ° A h z , A ~ ° h o , A ~°h lAh2}

13 = { A --* h0- }

14 = { A -'> h,A°h2}

15 = {A ~h iAh2o }.

242 D . A . R O S E N B L U E T H AND J. C. P E R A L T A

Finally, we obtain the following parsing table (using essentially the notation of [2]):

Action goto
Set of Items h 0 h I h 2 $ A

/0
11
/2
/3
/4

s3 s2 1
acc

s3 s2 4
r l r l
s5
r2 r2

Figure 2 shows the search space determined by hSLR inference for the append
program and the term ([], [a, b]).

The search space in Figure 2 illustrates two aspects. First, although the parsing
table has no conflicts, the sequences of clausal configurations have a branching
structure. Such a structure appears because the ground term of certain clausal
configurations unifies with the input of more than one h-command.

Second, this search space resembles that of SLD resolution for the original
program and goal (Figure 3). In fact, we will see that (1) except for some linear
components (like the one enclosed in a rectangle), the search space of hSLR
inference and the search space of SLD resolution with a leftmost computation rule
are isomorphic, and (2) such linear components increase the length of each SLD
refutation only by a number of nodes proportional to its length.

For instance, by replacing some linear components by a single node each in
Figure 2, we get a tree that is isomorphic to the SLD tree in Figure 3. Now
consider the linear component enclosed in a rectangle. Each operation in such a
component is caused by an operation applied to an ancestor. In particular, the " r l "
operation enclosed in a box is produced by the "s3" operation, also enclosed in a
box. Both can be viewed as applying the production A ~ h 0. Similarly, the
encircled "s5" and "r2" are a result of the encircled "s2," which amounts to
applying A ~ h 1Ah 2.

Thus, apparently hSLR inference does not present any advantage over SLD
resolution. In fact, the size of the hSLR search space may increase considerably
with respect to that of SLD resolution. Later, however, we will study the elimina-
tion of some h-subgoals in the chain program, which may reduce the size of the
search space.

Let P be a chain program and G be a chain goal. We define a CSLR tree for
P u {G} as a tree in which

1. each node is a clausal configuration for P U {G},
2. the root is the initial clausal configuration for P u {G}, and
3. each node has one child for each possible application of either the shift or

the reduce rule.

Given a fixed-mode program P and a fixed-mode goal G, we define the hSLR
tree for P U {G} as the CSLR tree f o r / ; u {G}, where P and (~ are obtained from
P and G by using the transformation of Subsection 4.2. (Figure 2 is an example of
an hSLR tree.)

SLR INFERENCE 243

s3J
J

(~oho~, ([], [], [., b]))

rl

(IoAI1, ([], [], [a,b]))
O, CC

(t0, ([], [", b]))

(Ioh~h, ([a], [b]))

J
(rohxI2hola, (N, [], [b]))

rl

(IohlI2AI4, ([a], [], [b]))

s5

(IohlI2AI4h2Is, ([], [a], [b]))

r2

(IoAZl, ([], [a], [b]))

a c c

(Iohl I2h112, ([b, a], []))

r 1

(IohahhxI2hoI3, ([b, a], [1, []))

(IohlI2hlhAI4, ([b, a], [], []))

(Ioh~hhlhAkh~h, ([a], [b], [])) I

(Ioh~ h AI4, ([a], [b], []))

s5

(IohlI~AI4h2Is, ([], [a, b], []))

r2

(IoAI1, ([], [a, b], []))

ace
FIGURE 2. The hSLR tree for the append program used for splitting the list [a, b].

Let T be an hSLR tree. A reduce-child of a node N of T is a child of N
obtained by applying the reduce rule. A shift-chiM of a node N of T is a child of N
obtained by applying the shift rule. An initial-child of a node N of T is a shift-child
of N obtained by applying the shift rule, using the leftmost symbol of a production.
(This symbol corresponds to the predicate symbol of an h-command.) A noninitial-
child of a node N of T is a shift-child of N that is not an initial-child.

Next we will state a lemma which establishes that only shifts of leftmost symbols
of productions may cause branching nodes in an hSLR tree. Hence the applications

244 D . A . R O S E N B L U E T H AND J. C. P E R A L T A

[]

{z/([] , [,,, b])}

. - .p(([a, hi), Z)

~p(([b]), (x', Y'))

J
[] ~ ap(([]), (X", Y"))

{ z / (N , [b]))

(10)

[]

{z/([a, b}, [])}

FIGURE 3. The SLD tree for the append program used for splitting the list [a, b].

of the reduce rule, as well as the applications of the shift rule for symbols other
than the leftmost, produce nodes with at most one child.

L e m m a 5.1. Let P be a f ixed-mode program, G a f ixed-mode goal, and T the h S L R
tree for P U {G}. Let N be a node o f T that has either a reduce-child or a
noninitial-child. Then N has exactly one child.

PROOF. Observe first that there are no r educe / r educe or sh i f t / reduce conflicts in
the parsing table for Rp. A r educe / r educe conflict is caused by a set of items
having items A ~ a B ° and A ' ~ f iB. . However, all productions in Rp have
distinct rightmost symbols.

In addition, a sh i f t / reduce conflict is caused by a set of items having items
A ~ aBo and A ' ~ ~3Boy. However, the rightmost symbol of each production in
Rp does not occur anywhere else.

As a consequence, an application of the reduce rule produces only one child.
Consider now applications of the shift rule (only h's are shifted). A clausal

configuration C = (.- . I, x) has more than one shift-child if (i) I has items of the
form A ~ o~ohly and A ' ~ f l*h26 , where a is a suffix of fl, and (ii) x unifies with
the first argument of both h I and h 2. However, because the productions in Rp
have no h's in common, a can only be a suffix of /3 if a =/3 = e. Hence, C may
have more than one child only if h 1 and h 2 a r e predicate symbols of leftmost
h-subgoals. []

Let T be an hSLR tree. We define an R-component t of T as a maximal subtree
of T such that (1) the root C of t is a clausal configuration with a reduce-child and
(2) t includes all descendants of C that are either reduce-children or noninitial-
children. Note that by Lemma 5.1, an R-component is linear.

We define a contracted h S L R tree as a tree obtained from an hSLR tree T such
that each R-component of T has been replaced by a single node: the leaf of that
R-component .

We are now in a position to establish the following theorem.

SLR INFERENCE 245

Theorem 5.1. Let P be a fixed-mode program and G a fixed-mode goal. Let T be the
SLD tree [19, p. 55] for P to {G} in which the lefimost subgoal is selected at each
node. Let T' be the contracted hSLR tree for P tO {G}. Then T and T' are
isomorphic.

PROOV. Let N be a node of T corresponding to a node N ' of T' . Suppose that the
leftmost subgoal of N is pi(x,Y) . Then N has one child for each clause with
predicate symbol Pi in the head, whose first argument unifies with x.

Consider now N ' = (. . . I , (s t l x)) . Note that T ' has no reduce or noninitial
children. Then the only way we can apply the shift rule is when a leftmost
h-command is used. In this case, I has

1. one item of the form

/3 --' hoPohl "'" hi°pihi+ 1 "'"

2. and one item of the form

Pi horohl "'"

for each clause in /3 with predicate symbol/3i in the head.

The transformation of Subsection 4.2 takes a clause with a head having as first
argument a term t o and produces a clause having as first argument the term
(St It 0). Hence N ' will have one shift-child for each clause defining an h-command
whose first argument unifies with (st Ix). We conclude that the theorem holds. []

Next, we can bound the length increase of refutations.

Theorem 5.2. Let P be a fixed-mode program and G = ~ s'(x, Z) a fixed-mode goal.
Assume that there is a refutation for P to {G} of length m that selects the lefimost
subgoal at every step. Then a final clausal configuration for (I0,x) can be con-
structed with O(m) applications of the shift or reduce rules.

PROOF. Consider a clause in P of the form

Po(to , t ' n)~p l (t ' o , t l) , p2 (t ' l , t 2) p , (t ' n 1,tn), (5.1)

so that a goal with a predicate symbol P0 succeeds if n subgoals succeed. This
clause is transformed into a chain clause that is associated with the production

/30 ~ h0/31hl/32 "'"/3nhn •

Hence, in terms of hSLR inference, from the clausal configuration (I 0 ... Bklk,y),
where (/30 ~ °ho/31hl/32 . . . /3nhn)~ I k, we need to shift the hi's as well as perform
a reduction step, in addition to the application of the /3i's (i > 1). First we can
charge the cost of each shift of h i to that of applying/3i, for i = 1 , . . . , n. Similarly,
we can charge the cost of shifting h 0 to that of the reduction step. Thus each SLD
resolution step corresponds to at most three steps of CSLR inference: two shifts
and one reduction step. []

5.2. El iminat ion o f S o m e Le f imos t h-Subgoals

Now we will logically justify the elimination of certain h-subgoals added by our
transformation, which may result in a considerable reduction in the size of the
search space.

246 D. A. ROSENBLUETH AND J. C. PERALTA

Theorem 5.3. Let t 3 be a chain program obtained from transforming the fixed-mode
program P, having a clause C of the form

/30(U0, U;) <-- h0(V0, U0),/~I(U~, U1) /3n(U;_l, On) , hn(Un, U;),

where h o is defined by the clause

ho((St [t), (St l t)) ~ .

If/3l is defined by

/3t(U,V) ~ U = (S t [t ') & V = (S t [t ") & a ,

where tO = t', then the clause

/30(U0,U;) <--/31(U0,U1) , / 3 n (U ; _ l , 0 n) ,hn(Un,U;)

is a logical consequence of C, the definition of h 0, the definition of/31, and the
standard equality theory.

PROOF. First we unfold the definition of h 0 in C:

/3o((St l t) , U;) ~--p,((StJt) , U,) , pn(Un_l, On) , hn(on, U;).

Next we apply predicate substitutivity p (U , V) ~ U = X , V = Y, p (X , Y) for /3o
followed by reflexivity:

/3o(Oo,Vn) ~-- U o = (S t[t) , /31((S t[t) ,U1) ,fin(U; 1,On),hn(Un,U;).

Then we apply predicate substitutivity for/31 followed by reflexivity:

/3o(Uo, Un) *- U o = (St I t) , (S t i r) =X,/31(X,/.]1)

/3,(U;-1, On), hn(On , U;) .

W e el iminate a subgoal by first applying symmetry and then factoring:

/30(Uo , On) <--- Uo = (St [t),/31(U0, U1) /3n (U~ - 1, On), h n (Un , U;) .

Now we unfold the definition of ,31:

/3o(Uo,V') ~ e o = (St I t) , U = (S t l t ') , V = (S t l t ") , a

f fn(O;-1,Un),hn(Un,U;) •

Subsequently, we apply factoring:

/3o(Uo, U~) ~--- e o = (St [tO) , V= (S t [t ") , o~ ~n(U;_ l, Un), hn(Un, U;).

Finally, we can fold the definition of/31 because tO = t':

/30(U0, On t) <'-pm(U0, U1) ,Pn(U;_l, on), h , (on, U~). []

This theorem deals with the elimination of h 0 in a clause of the form

/30--*h0,/31,hl ,hn_ l, ~n,h n.

However, it is possible to extend this result for the elimination of the leftmost
h-subgoal h i in a clause of the form

/30 --">/') 1,/32 /3i-l,fii,hi'/3i+l,hi+m h n - l , P n , h n ,

SLR INFERENCE 247

because subgoals with predicate symbols /3 i succeed without modifying the stack
added by the transformation.

Example 5.2. A n example illustrating how the search space is reduced by the
elimination of leftmost h-subgoals denoting a subset of the identity relation is (in
DCG notation)

s (A) ~ a (A)

s (f (A)) ~ b , s (A) , c

s (g (A)) ~ b , s (A)

a (a ' , [a ' l X] , X) +-

b ([b ' l X] , X) ~-

c ([c ' l X l , X) +-.

The associated grammar rules are

s ~ h o a h x

s ~ h 2 bh 3 sh 4 c h 5

s ---> h 6 bh 7 sh 8

a --~ h 9

b ~ hlo

c ~ h l l .

In this case, the subgoals with predicate symbols h o, h~, h 2, h 3, h6, h7, h9, hi0, and
h n can be eliminated (the first six h's by Theorem 5.3, and the other three h's by
resolution). With a clausal configuration of the form

(I o , ([l , [b ' , b ' , . . . , b ' , a '])) ,

n

the resulting search space has, apart from a successful branch, failed branches of
length 1. As a consequence, when adding a search strategy to SLR inference
(Section 6), the proof procedure obtained takes a linear time in n to succeed. By
contrast, Prolog requires an exponential time in n.

We now explain this example. First note that the grammar with productions

S + a (5.2)

S ~ bSc (5.3)

S --+ bS, (5.4)

represented with difference lists, causes Prolog to take an exponential time in n to
parse the string bna. A (correct) top-down parsing of the string uses production
(5.4) n times before using (5.2). Prolog, however, first selects the wrong production
(5.3) n times before backtracking and selecting (5.4) only as the final step.
Backtracking then removes the last two productions, making now a correct choice
for the second last step, but again making a wrong choice for the last one. Thus
Prolog's behavior parallels that of a binary counter as its value goes from 0 to 2 n.

248 D. A. R O S E N B L U E T H A N D J. C. P E R A L T A

We then added some context-sensitive information, recording which production
was used to parse the input string.

Figure 4 summarizes the comparison of the search spaces determined by the
inference systems described in this paper and that of SLD resolution. Contain-
ments depicted with double dotted lines are meant to hold between inference
systems with search spaces that are (essentially) isomorphic (i.e., isomorphic except
possibly for R-components). Containments depicted with one line are meant to
hold between inference systems with search spaces whose size presumably de-
creases as we go from top down the figure.

First, if we use CSLR inference on the chain programs produced by our
transformation (i.e., hSLR inference), then (1) the size of the refutations is O(n),
where n is the length of SLD refutations for the original program, and (2) apart
from a possible increase in the length of refutations (R-components), both search
spaces are isomorphic. Second, if it is possible to remove some h-subgoals (by
Theorem 5.3), then the size of the search space may be reduced. Finally, if the
original logic program has chain form, then all h-subgoals added by the transforma-
tion can be removed. In this case, CSLR inference determines a search space that
is essentially the same as that of SLR parsing (using backtracking in case of
conflicts) for the chain program and its associated context-free grammar.

6. A PROOF PROCEDURE

In this section, we will add a search strategy to SLR inference, obtaining a proof
procedure.

Once a parsing table is constructed, an ordinary SLR parser uses a program
(sometimes called a driver) to determine the action to be performed (shift, reduce,
accept, or error) for the current configuration. If the table has no conflicts, the
search space is linear. Because we regard conflicts as nondeterministic choice
points [16], a parsing table with conflicts determines a branching search space. We
use Prolog's search strategy to traverse such a space.

Our inference system has yet another source of nondeterminism. A logic
program representing a context-free grammar with difference lists contains unit
clauses of the form c'([c X], X) ~-. Hence a list [c] representing a string is

Thms. 5.1, 5.~
hSLR in "erence SLD resolution

Thin. 5.3

SLR in ~erence

Thin. 5.3

CSLR inference-- nondet. SLR parsing

FIGURE 4. Containments between search spaces.

SLR INFERENCE 249

"transformed" into at most one other list when a unit clause is used. By contrast, a
chain program contains unit clauses of the form c'(t, t ') , - - , and arbitrary ground
terms play the role of lists. As a result, there may be more than one way to
transform a given ground term by using different unit clauses. This is a second
source of nondeterminism, which we also handle with Prolog's search strategy.

In the Appendix, we give the Prolog code for our driver, which behaves as
follows. Given a clausal configuration (. . . Ik, x), the driver first finds a unit clause
of the object program whose input unifies with x. Then the driver uses the
predicate symbol of such a clause to determine an action from the parsing table.
Unlike the original SLR parser, our proof procedure may find more than
one grammar/predica te symbol associated with the same ground term of a
(clausal) configuration. This may happen if x unifies with the input of more than
one unit clause. We perform one action and then the other one, through Prolog's
backtracking.

In the next examples, our proof procedure may be preferable to DCGs under
Prolog. First we give a left-recursive DCG for which Prolog enters into a nontermi-
nating loop, whereas our method does not:

expr(A) ~ a (A)

expr (add(E, T)) ~ expr(E) , plus, expr (T)

a(int, [int l X] , X)

plus(I+ Ixl,x) .

A goal could be: *-expr(E, [int, +, int], R).
Another program is Example 5.2. Using goals of the form

the original DCG under Prolog takes an exponential time in n to succeed, whereas
our method takes a linear time.

7. COMPARISONS WITH OTHER METHODS

There are several inference methods for logic programs that use variants of LR
parsing [13, 21, 28, 30, 34, 35]. In this section we review some of these methods and
compare them with SLR inference.

7.1. A Comparison with Nilsson's A I D

Nilsson's "alternative implementation of DCGs" (AID) [21] is perhaps closest to
the present work. Esssentially, Nilsson first generates LR parsing tables, ignoring
the contextual information in the DCG clauses. He then uses a modified LR parser
that considers the contextual information for each clause when the production
corresponding to such a clause is reduced. As a consequence, the selection of
subgoals having contextual information is delayed until reduction occurs.

Consider, for example, the following fragment of a DCG:

expr(X) ~ expr(Y), [+], expr(Z), { X is Y + Z} .

250 D. A. R O S E N B L U E T H AND J. C. P E R A L T A

The AID method first generates the parsing table for the production
expr ~ expr + expr,

together with the productions corresponding to the rest of the clauses. Then the
reduce operation of the parser considers the components of the original clause that
were ignored:

r(1, expr, [_, _ ,_ IS], S, [expr(Y), +, expr(Z) IA], [expr(X) IA]) ~ Xis Y+ Z

The first argument is an index to the original clause. The second argument
represents the left-hand side of the production. The third and fourth arguments
are the stack of the parser [2], before and after the reduce operation. This stack
stores nodes of a finite-state automaton. The last two arguments behave like a
stack also, recording the output of the original clause (i.e., the value of the
expression).

As observed by Nilsson, because the selection of subgoals is delayed until a
reduction occurs, subgoals are not evaluated in the usual order. Consider the
following variant of the above example, in which we wish to bound the depth of
expressions to 10, for instance:

expr(N , X) ~ {N < 10, N' is N + 1},

expr(N', Y) , [+], expr(N' , Z) ,
(X is Y+ Z}.

Here the first argument acts as input. If implemented as inferred from [21], AID
would delay the evaluation of {N ___ 10, N' is N + 1}. As a result, not only is the
depth of the expression ignored, but Prolog also selects a subgoal of the form
M < 10, where M is a variable, so that an "instantiation error" occurs. Our proof
procedure, by contrast, can handle this clause and, in general, logic programs in
which there are both input and output arguments.

7.2. Parsing for Attribute Grammars

Abramson [1], as well as Deransart and Matuszyfiski [10], have investigated connec-
tions between attribute grammars [15] and logic programs. These connections
result in similarities between parsing methods for attribute grammars, on the one
hand, and inference systems for logic programs, on the other. We will concentrate
on Jones and Madsen's method [13], which is based on LR parsing and generalizes
many existing parsers for attribute grammars.

Example 7.1. Consider, for example, the following attribute grammar for character-
izing binary numerals with radix point [10, 15]:

rl:Z--->N.N u (Z) = v (N 1) + v (N 2)

r(N1) = 0

r 2 : N ~ N B v (N o) = v (N 1) + u (B)

r (B) = r(No)

r3 : N--* e v(N) =0

r 4 : n --~ 1 u (B) = 2 r(B)

r s : B ~ O v(B) =0.

r(N2) = - l (N2)

l(No) = I(N1) + 1

r(N1) =r(N0) + 1

I (N) = 0

SLR INFERENCE 251

"Synthesized" attributes, such as v(B), v(N), l(N), and v(Z), are evaluated from
the bottom up in the parse tree. "Inherited" attributes, such as r(B) and r(N), by
contrast, are evaluated from the top down.

Jones and Madsen observe [13] that the value of some attributes cannot be
computed during left-to-right and bottom-up parsing, but can be computed once
the parsing has been performed. An example of such an attribute is r(N), which is
inherited and depends on a synthesized attribute l (N) in the second occurrence of
N in the production r 1 (equation r (N 2) = -/(N2)).

Following Deransart and Mahaszyfiski [9, p. 53], this attribute grammar can be
described with the following DCG:

z (V 1 q- V2) ---) R(O, L1,V1) ,[.] , l l (-L2,L2,V2) (7.1)

n(R,O,O) ~ [] (7.2)

n(R , L l + 1,V 1 + V2) ~ n(R + 1 ,L l ,V l) ,b (R,V2) (7.3)

b (R , 2 R) ~ [1] (7.4)

b(R,O) ~ [0]. (7.5)

A goal would be: ~ z(V, [1, 0,. ,0, 1], Rest).
An attribute grammar with attributes that cannot be evaluated during left-to-

right parsing is translated [10] into a DCG that may not be a fixed-mode program.
In this example, for instance, the first argument of the last subgoal n (- L 2 , L2, V 2)
in clause (7.1) violates condition 1, and hence this program is not fixed-mode.

It is worth observing that in spite of this violation, this particular example can be
transformed into chain form by pushing L z onto the stack. First, we group
argument places into inputs and outputs. We classify the first argument place of n
as input, so that clause (7.1) becomes

z ' ((X o) , (X 3 , V , + V2)) ~-n'((Xo,O),(X1,L1,V1)) ,

p'(X,,X2),

n ' ((X 2 , - L 2) , (X3,Lz ,V2)).

Next, we add the stack, where we push L 2 in addition to the variables indicated by
the transformation:

2(<st0, x0>, (st3, x3, v,,3 +

n((St0, X0,0), (Stl, Xl, L,, Wl, 1)),

v ,1 i st ,] , xl >, ([v,,e i st], x2>),

n(<[[L-~-],V1, 2 [St2],X 2, -L2,2) ,<[[L~,v1 ,3 [St3],X3,L2,3,V2,3)).

Finally, we obtain chain form by folding the h predicates:

2---+ ho , f t , h l ,p ,h2 ,h ,h 3.

The predicate with symbol h e will then produce configurations with a nonground
term, because Le, 2 is not instantiated when h e is shifted. However, if we use full
unification instead of matching in CSLR inference (Section 3)--which is what we
have done in our driver, since it is written in Prolog--this modified method will
compute the values of binary numbers with the above program.

252 D. ,A~ R O S E N B L U E T H AND J. C. P E R A L T A

This example, however, presents another difficulty, which is not overcome by
SLR inference, resulting from clause (7.3) being left-recursive. The leflmost
h-subgoal of the chain form of clause (7.3) is defined by a clause of the form

h 4 ((X o, R) , (X 0, R + 1))

and does not denote a subset of the identity relation. Thus such a subgoal cannot
be eliminated by Theorem 5.3. By Theorem 5.1, no choice points of SLD resolution
(for the original program and goal) are eliminated by SLR inference either.
Therefore, SLR inference falls into an infinite loop (after producing the value of
the binary numeral), just as Prolog does.

We can now continue with our comparison. First, we will consider the parsing
method of Jones and Madsen [13], which we will call AILR parsing (for attribute-
influenced LR parsing). We will describe the essence of AILR parsing, and refer
the reader to [13] for a more detailed account of this method. AILR parsing
creates a data structure called the expression dag as the parsing proceeds. The
purpose of this structure is to record the necessary information for computing the
values of the attributes that could not be computed during parsing.

In addition, instead of the configurations used by ordinary LR parsing, which are
of the form

(I o B l I 1 . . . B m I m, cici+ 1 "'" c,$),

AILR parsing uses configurations of the form

(Ioio31BlI 1 ...[m_lamBmIm, cici+ 1 ""Cn$),

where

1. ~ is a record containing the values of the inherited attributes of all nontermi-
nals B such that (A -o a o B B) ~ I j , and

2. Bj is a record containing the values of the synthesized attributes of Bj.

AILR parsing parallels LR parsing, producing a sequence of configurations. The
application of the shift and reduce rules, however, is interleaved with the computa-
tion of the value of some attributes and the incremental construction of the
expression dag.

Let us now consider hSLR inference. For simplicity, assume a DCG that
contains, among others, a clause of the form

a(. . .) --, x (- - -) .

This clause is transformed into the following clause in chain form:

~t --* h o , .~ , h 1.

The command h 0 pushes onto the stack added by the transformation some values
needed later in the computation and establishes the input arguments for x. The
command h 1, in turn, pops off the stack of the transformation some values and
recovers the values of the output arguments for x.

hSLR inference then produces the configuration

(I o h o l l x I 2 h l I 3 , Y),

SLR INFERENCE 253

whereas AILR parsing produces the configuration

(So~SoX-~S,, Y),
where

1. S0 contains, among other items, A ~ °X,
2. S O records the values of the inherited (input) attributes of X,
3. X is the right-hand side of the production without attributes,
4. X records the values of the synthesized (output) attributes of X,
5. S 1 contains the item A ~ X°, and
6. y is a string.

In this example, the command h 0 corresponds to S 0 (input arguments), and the
command h I corresponds to ,~ (output arguments).

As a conclusion, the records Sj and /3/ of AILR parsing are reminiscent of our
h-commands.

If we use Deransart and Mahaszyfiski's translation [9] of attribute grammars into
DCGs, we obtain a logic program that builds a term as its output. In contrast,
AILR parsing builds an expression dag specifically designed for computing the
remaining attribute values. Jones and Madsen [13] have incorporated numerous
optimizations into such a data structure. Thus AILR is probably superior to our
method in this respect.

Another conspicuous difference between AILR parsing and SLR inference
appears in nondeterministic programs. AILR parsing is meant for obtaining the
values of the attributes of the parse tree of a given string. SLR inference, by
comparison, can be used not only for parsing an input string, but also for
computing several answers.

7.3. A Comparison with Sato and Tamakd's "Success Patterns"
Both AID and AILR can be viewed as adapting the complete LR parser. Sato and
Tamaki present in [28] an inference method that adapts only the preprocessing
stage of such a parser. We will illustrate Sato and Tamaki's "success patterns" [28]
through an example, but refer to [28] for a thorough discussion of this method.

Ordinary LR parsing can be regarded as having two stages: a top-down traversal
of possible parse trees (encoded in a finite-state automaton), followed by a
bottom-up construction of a parse tree (by means of shift and reduce operations).
The success-patterns method performs a top-down traversal of proof trees for a
logic program P and a goal G, reminiscent of the first stage of LR parsing. Given a
goal G' = GO, the information obtained by such a traversal can then be used to
obtain necessary conditions for the success of derivations for P u {G'}.

Consider the following program [28]:

P={a(X)~b(X) ,d (X) , b (X)~c(V) , c (1) ~ , c (2) ~ , d (2) ~ }

and the goal G = ~ a(Z). First, the initial set of items,

Io={~oa(Z), c (1) ~ ° , c (2) ~ o , d (2) ~ °) ,

is computed. Next, this method computes the "downward closure" of I 0 (which
resembles the closure of a set of items in ordinary LR parsing):

I ~ = I o U { a (X) ~ ° b (X) , d (X) , b(Y)~°c(Y)} ,

254 D . A . R O S E N B L U E T H AND J. C. P E R A L T A

and then the "upward closure" of I~ (which in turn resembles computing the goto
function of ordinary LR parsing):

I i = I ~ U { b (1) ~ c (1) o , b(2) ~ c(2)o,

a (a) ~ b (1) , ° d (1) , a (Z)~b (Z) ,*d (2) } .

For example, the item b(2) ~ c(2)° was obtained by operating c(2) ~ - (in 10) with
b(Y) ~ °c(Y) (in I~). The downward and upward closures are repetitively com-
puted until no more new items can be generated. The resulting set of items is

I = 11 U {a(2) ~ b(2) , d(2)° , ~ a(2)o}.

Finally, the authors collect, from I, the items with the dot at the rightmost position
that are relevant to the goal:

Is,cc = { ~ a (2) o , a(2) ~ b (2) , d (2) ° , c(2) ~ -, d(2) ~ o}.

The Is,co set has information about successful derivations and can thus be used to
prune the SLD tree. By examining Is,cc for this example, we know that the goal

a(2) succeeds, whereas the goal ~ a(1) fails. In general, the I~,c~ has the
following property. Let C be the input clause of a derivation step of a refutation,
and 0 the corresponding most general unifier. Then there is an item (C°)o- in Is,,. ,.
such that CO- Co-y. The items in Is,cc are more general than we would like, so
that this property of Is,~c is only a necessary condition for success.

To ensure termination in the computation of the item set, Sato and Tamaki
truncate the term depth to a predefined value k. The value of k is crucial, since
too small a k may limit the applicability of the necessary condition, and too large a
k may produce an impractically big Is,cc. By contrast, our method does not need to
perform such a truncation.

7.4. A Comparison with Yamashita and Nakata's ccfg's

Finally, we consider a formalism devised by Yamashita and Nakata [35], which is
amenable to execution by variants of parsing methods.

A coupled context-freegrammar (ccfg) is a four-tuple (V, T, P, S), where

1. V is a finite set of nonterminals;
2. T is a finite set of terminals, such that V n T = @;
3. P is a collection of sets of rules, in which each rule is of the form

A ----) a ,

where A is an unsubscripted nonterminal, and a is a string of (i) terminals,
(ii) subscripted nonterminals, and (iii) the meta-symbol - ; and

4. S is a tuple of nonterminals called the start tuple.

A tuple of strings

j n (aAice", /3Bi /3),

together with an integer k and a set {A ~ ~ ', B ~ /3 ' } of productions, directly
derives the tuple

. . . .

SLR INFERENCE 255

together with the integer k + 1. Here ()k is defined as

(a a) k = a (a) k

A derivation is a finite sequence of derivation steps that starts with the tuple
(S O T °) and integer 1, where (S T) is the start tuple, and ends with a tuple
of strings of terminals, possibly also containing = . If a derivation ends in a tuple
having a string a containing - , then a is of the form /3 - / 3 -= -.- -=/3.

Concatenation of strings is distributive over - . For instance, a concatenated
with a N 2 ~ aaN2 2 is a a N 2 - aaaN~.

Finally, note that a ccfg nondeterministically generates a set of tuples of strings.

E x a m p l e 7.2. A n example of a ccfg for computing Fibonacci numbers is

{N--+ e , F ~ a } (7.6)

{N --+ a, F ~ a} (7.7)

{ N ~ a N 1 - a a N 2 , F --+ F1F2}. (7.8)

A derivation that computes the third Fibonacci number is

<(U °, F0°), 1)
(7.8)

((a N ~ - aaN~, F~__F~) , 2) ~
(7.8)

((a a N ~ - a a a N 2 - aaN~,Fa2F~F~) ,3)
(7.7)

((a a a - a a a N 2 - a a N 1 , aF2__F 1) , 4) =
(7.6)

((a a a - aaa - aaNl ,aaF__~) ,5)
(7.7)

((a a a ~ a a a ~ a a a , a a a) , 6) .

Yamashita and Nakata suggest how to use a parser to execute a ccfg. First, each
coordinate in the tuples generated by the grammar is identified as being either
input or output. Next, a parser is used to parse the input components, and a
generator is used to produce the output components. The parser and the generator
are coupled in the sense that for each production of the grammar applied by the
parser, a corresponding production in the same set of productions is applied by
the generator.

These authors give an example of a ccfg that could be executed by using an LR
parser. In such an example, there is no occurrence of =-, and it is plausible that
such a parser could be adapted as claimed. In a ccfg in which = occurs, however,
it is not clear how to modify a parser for execution, since not only is string
concatenation distributive over = , but the same string must appear in between
different occurrences of ---- for a ccfg derivation to succeed.

256 D. A. R O S E N B L U E T H A N D J. C. P E R A L T A

8. CONCLUDING REMARKS

This work was motivated by similarities between logic programs and context-free
grammars. These similarities suggest the possibility of developing inference systems
based on parsers. Because it is not obvious how to obtain such inference systems,
we considered chain logic programs, which have clauses of the form

a o (X o , X ,) ~ b l (X o , X 1) , b 2 (X 1 , X 2) b , (X n _ I , X ,) or a l (t , t ') ~ ,

where var(t ') ___ var(t), and goals of the form ,-- s(x, Z), where x is a ground term
and Z is a variable. We saw that by incorporating a match operation (one-way
unification) to the parts of an SLR parser dealing with terminals, we get an
inference system for chain programs. Conflicts in the parsing table can be treated
as nondeterministic choice points [16], which we handle with a driver written in
Prolog.

Normally, logic programs do not have chain form. Hence we used a transforma-
tion taking a fixed-mode logic program and producing a chain program, which we
had previously developed [25] for inference systems based on chart parsers. We
convert each clause

p0(t0, t'n) ~ Pl(t'o, t l) , pe(t'l, t2) Pn(t'n-1, tn)

into

Po(G, G) "- ho(G, G), P (G, G), h,(G, v;), p:(u;, G) ,

hn_l(Un_l,U~_l),Pn(U~ 1,Un),hn(Un,U')

(together with unit clauses defining the hi's). As a result, our modified SLR parser
becomes an inference system for fixed-mode logic programs.

The addition of the h i predicates, however, creates new nondeterministic choice
points and eliminates potential advantages that could have resulted from the
obtained inference system. The reason is that the resulting search space is
essentially isomorphic to that of SLD resolution for the original program.

Such advantages may reappear once we observe that some of the introduced
subgoals of predicates h i denoting subsets of the identity relation can be elimi-
nated.

Although we can handle arbitrary fixed-mode logic programs, we have mainly
seen advantages of our technique over SLD resolution in grammatical examples. A
reason could be perhaps that the context-sensitive information of such examples is
not "so much" as to prevent the elimination of some of the introduced h-subgoals.
Thus we have illustrated SLR inference with grammatical applications. We gave an
example making DCGs under Prolog enter into a nonterminating loop, for which
our proof procedure halts. We also gave a program causing DCGs under Prolog to
take an exponential time in the length of the input to succeed, for which our proof
procedure requires a linear time.

We based our exposition on an SLR parser [2]. We believe, however, that
variations around LR parsing, such as LALR, LR(k), and even Tomita's parser [33],

SLR INFERENCE 257

could be used alternatively. Depending on the parser on which an inference system
is based, different search spaces will be obtained.

Here and in [25], we modified parsers by (1) adding unification to the treatment
of the leaves of the proof/parse trees and (2) applying the resulting inference
system to programs transformed into chain form. The idea of adapting other
parsers in a similar way remains to be explored.

APPENDIX: DRIVER FOR CHAIN PROGRAMS

Here we give the Prolog code of a driver for SLR inference. We handle nondeter-
minism with Prolog's backtracking, but for simplicity we have assumed that the
parsing table has no reduce/reduce conflicts. (A driver handling such conflicts
would be considerably longer.)

% example DCG
% expr (A)--> a (A).
%expr(add(E, T))-->expr(E), plus, expr(T).
% a(int, [int I X], X).
~plus([+ I x], z).

%rule(0, exprl, [expr]).
%rule(l, expr, [expr, hl,plus,h2, expr, h3]).
%rule(2, expr, [a]).

%next_state(plus, [St,[+ IX]], [St, X]).
% next_state(a, [St, [int I X]], [St, X, int]).
%next_state(hl, [St, X, E] , [[E I St], X]).
%next_state(h2, [[E I St], X], [[El St], X]).
% next_state(h3, [[E I St],

%action(7, fin, r(1)) .
%action(6,hl, s(3)) .
%action(4,h2, s(5)) .
%action(2, hl, s(3)) .
%action(l,h3, r(2)) .
% goto (0, expr, 2).

x, F], [st, z, p{E, ~)]).

action(7,hl, r(1)).
action(6,h3, s(7)).
action(3,plus,s(4)).
action(l, fin, r(2)).
action(0,a, s(1)).
goto(5,expr, 6).

action(7,h3, r(1)).
action(5,a, s(1)).
action(2, fin, acc).
action(l,hl,r(2)).

%?-move([0],[[],[int, +,int, +,int]],S). example goal

move([NodelStack],State, State2) :-
next_state(Command, State, Statel),
actio~ Node, Command, s(Nodel)),
move([Nodel, NodelStack], Statel, State2).

move([NodelStack], State, Statel):-
actionl(Node, State, Rule),
rule(Rule, Head, Body),
reduc~ [NodelStack],Head, Body, Stackl),
mov~ Stackl, State, Statel).

move([NodelStack], State, State) :-
actio~ Node, fin, acc).

reduc~ [WodeIStac~,Head,[],[Ooto,NodelStac~):-
goto(Node, Head, Goto).

reduc~ [NodelStac~, Head,[NonTermlNonTerms],Stackl):-
reduc~ Stack, Head, NonTerms, Stackl).

actionl(Node, State,

actionl(Node, State,

Rule):- next_state(Command, State, Statel),
actio~ Node, Command, r(Rule)), !.

Rule)> actio~ Node, fin, r(Rule)).

258 D. A. R O S E N B L U E T H AND J. C. P E R A L T A

Our work benefited from motivating discussions with Carlos Velarde. Warren Greiff's careful reading of
an earlier version of this paper was most helpful. Fernando Magarifios helped us with LATEX. We are
also grateful to the referees of both ILPS '94 and The Journal of Logic Programming, whose comments
helped improve the presentation of these results. We acknowledge the facilities provided by IIMAS,
UNAM. This work was supported by grant IN301192 of DGAPA, UNAM.

REFERENCES
1. Abramson, H., Definite Clause Translation Grammars, in: Proc. 1984 Int. Syrup. Logic

Programming, Atlantic City, N J, 1984, pp. 233-240.
2. Aho, A. V., Sethi, R., and Ullman, J. D., Compilers--Principles, Techniques, and Tools,

Addison-Wesley, Reading, MA, 1986.
3. Apt, K. R., Declarative Programming in Prolog, in: Proc. 1993 Int. Syrup. Logic

Programming, Vancouver, Canada, MIT Press, Cambridge, MA, 1993, pp. 12-35.
4. Apt, K. R. and Marchiori, E., Reasoning about Prolog Programs: From Modes through

Types to Assertions, FormalAspects Comput. 6A:743-764 (1994).
5. Ashcroft, E., Manna, Z., and Pnueli, A., Decidable Properties of Monadic Functional

Schemas, J. ACM 20:489-499 (1973).
6. Clark, K. L. and van Emden, M. H., Consequence Verification of Flowcharts, IEEE

Trans. Software Eng. SE-7:52-60 (1981).
7. Clark, K. L., Predicate Logic as a Computational Formalism, Technical Report 79/59,

Department of Computing and Control, Imperial College, London, 1979.
8. Villemonte de la Clergerie, E. and Lang, B., LPDA: Another Look at Tabulation in

Logic Programming, in: Pascal Van Hentenryck (ed.), Proc. l l th Int. Logic Programming
Syrup., MIT Press, Cambridge, MA, 1994, pp. 471-486.

9. Deransart, P. and Mahaszyfiski, J., What Kind of Grammars Are Logic Programs?, in: P.
Saint-Dizier and S. Szpakowicz (eds.), Logic and Logic Grammars for Language Process-
ing, Ellis Horwood, Chichester, 1992, pp. 28-55.

10. Deransart, P. and Matuszyfiski, J., A Grammatical View of Logic Programming, MIT
Press, Cambridge, MA, 1993.

11. Drabent, W., Do Logic Programs Resemble Programs in Conventional Languages?, in:
Proc. 1987 IEEE Symp. Logic Programming, San Francisco, CA, IEEE Press, New York,
1987, pp. 389-396.

12. Engelfriet, J., Simple Program Schemes and Formal Languages, Lecture Notes in Computer
Science 20, Springer-Verlag, Berlin, 1974.

13. Jones, N. D. and Madsen, M., Attibute-Influenced LR Parsing, in: Semantics Directed
Compiler Generation, Lecture Notes in Computer Science 94, Springer-Verlag, Berlin,
1980, pp. 393-407.

14. Knuth, D. E., On the Translation of Languages from Left to Right. Information Control
8:607-639 (1965).

15. Knuth, D. E., Semantics of Context-Free Languages, Math. Syst. Theory 2:127-145
(1968).

16. Lang, B., Deterministic Techniques for Efficient Non-deterministic Parsers, in: J.
Loeckx (ed.), Proc. 2nd Colloquium Automata, Languages and Programming, Springer-
Verlag, Berlin, 1974, pp. 255-269.

17. Lang, B., Complete Evaluation of Horn Clauses: An Automata Theoretic Approach,
Technical Report 913, INRIA, Rocquencourt, 1988.

18. Lang, B., Datalog Automata, in: Proc. 3rd Int. Conf. Data Knowledge Bases, 1988, pp.
389-404.

19. Lloyd, J. W., Foundations of Logic Programming, 2nd edition, Springer-Verlag, Berlin,
1987.

SLR I N F E R E N C E 259

20. Mazurkiewicz, A., Recursive Algorithms and Formal Languages, Bull. Acad. Polon. Sci.
S~r. Sci. Math. Astr. Phys. 20:799-803 (1972).

21. Nilsson, U., AID: An Alternative Implementation of DCGs, New Generation Comput.
4:383-399 (1986).

22. Pereira, F. C. N. and Warren, D. H. D., Definite Clause Grammars for Language
Analysis--A Survey of the Formalism and a Comparison with Augmented Transition
Networks, Artif. Intell. 13:231-278 (1980).

23. Pereira, F. C. N. and Warren, D. H. D., Parsing as Deduction, in: 21st Annual Meeting
Association Computational Linguistics, Cambridge, MA, Association for Computational
Linguistics, 1983, pp. 137-144.

24. Rosenblueth, D. A., Fixed-Mode Logic Programs as State-Oriented Programs, Technical
Report Preimpreso No. 2, IIMAS, UNAM, 1991.

25. Rosenblueth, D. A., Chart Parsers as Inference Systems for Fixed-Mode Logic Pro-
grams, New Generation Comput. 14:429-458 (1996).

26. Rosenblueth, D. A. and Peralta, J. C., LR Inference: Inference Systems for Fixed-Mode
Logic Programs, Based on LR Parsing, in: Maurice Bruynooghe (ed.), Proc. Int. Logic
Programming Symp., Ithaca, NY, 1994, pp. 439-453.

27. Rutledge, J. D., On Ianov's Program Schemata, J. ACM 11:1-9 (1964).
28. Sato, T. and Hisao Tamaki, H., Enumeration of Success Patterns in Logic Programs,

Theoret. Comput. Sci. 34:227-240 (1984).
29. Shoenfield, J. R., Mathematical Logic, Addison-Wesley, Reading, MA, 1967.
30. Stabler, E. P., Deterministic and Bottom-Up Parsing in Prolog, in: Proc. 1st Nat. Conf.

Artif. Intell., 1983, pp. 383-396.
31. Stark, R. F., A Direct Proof for the Completeness of SLD-Resolution, in: E. B6rger,

H. Kleine Brining, and M. M. Richter (eds.), Computation Theory and Logic 89,
Springer-Verlag, Berlin, 1990, pp. 382-383.

32. Tamaki, H. and Sato, T., Unfold/Fold Transformation of Logic Programs, in: Proc.
Second Int. Logic Programming Conf., 1984, pp. 127-138.

33. Tomita, M., An Efficient Augmented-Context-Free Parsing Algorithm, Computat. Lin-
guistics 13:31-46 (1987).

34. Uehara, K., Ochitani, R., Kakusho, O., and Toyoda, J., A Bottom-Up Parser Based on
Predicate Logic: A Survey of the Formalism and Its Implementation Technique, in:
Proc. 1984 Int. Symp. Logic Programming, Atlantic City, NJ, 1984, pp. 220-227.

35. Yamashita, Y. and Nakata, I., Coupled Context-Free Grammar as a Programming
Paradigm, in: Proc. Int. Workshop Programming Languages Implementation Logic Pro-
gramming PLILP '88, Orl6ans, France, 1988, pp. 132-145.

