
Why the Occur-check is Not a Problem

Krzysztof R. Apt
Centre for Mathematics and Computer Science

Kruislaan 413, 1098 SJ Amsterdam, The Netherlands
and

Faculty of Ma.thematics a.nd Computer Science, University of Amsterdam
Plantage Muidergracht 24, 1018 TV Amsterdam, The Netherlands

Alessandro Pellegrini
Dipartimento di Matematica Pura ed Applicata

Universita di Padova, Via Belzoni 7, 35131 Padova, Italy

Abstract

In most Prolog implementations for the efficiency reasons so-called occur-check is omitted
from the unification algorithm. We provide here natural syntactic conditions which allow
the occw-check to be safely omitted. The established results apply to most well-known
Prolog programs and seem to explain why this omission does not lead in practice to any
complications.
Note. This research was done during the second author's stay at Centre for Mathematics
and Computer Science, Amsterdam. His stay was supported by the 2060'" District of the
Rotary Foundation, Italy.

1 Introduction

The occur-check is a special test used in the unification algorithm. In most Prolog implementa
tions it is omitted for the efficiency reasons. This omission affects the unification algorithm and
introduces a possibility of divergence or may yield incorrect results. This is obviously an unde
sired situation. This problem was studied in the literature under the name of the occur-check
problem (see e.g. Plaisted [Pla84] and Deran.sart and Maluszynski [DM85b]).

The aim of this paper is to provide easy to check syntactic conditions which ensure that
the occur-check can be safely omitted. We use here a recent result of Deransart, Ferrand and
Teguia [DFT91] and build upon it within the context of moded programs. This allows us to
extend the results ofDeransart and Maluszynski [DM85b], to simplify the arguments of Chad.ha
and Plaisted [CP91] and to offer a wllform presentation. Additionally, the results of the former
paper needed here are proved directly, without resorting to the techniques of the attribute
grammars theory, and the results of the latter paper are supplied with a needed justification.
The established results apply to most well-known Prolog programs. In fact, we found in the
book of Sterling and Shapiro [SS86] only two (sic!) programs to which these results cannot be
directly applied.

In what follows we study logic programs executed by means of the LD-resofotion, which
consists of the SLD-resolution combined with the leftmost selection rule. An SLD-derivation
in which the leftmost selection rule is used is called an LD-derivation. We allow in programs

70

various first-order built-in's, like =, f:., >, etc, and assume that they are resolved in the wa.y
conforming to their interpretation.

Throughout the paper we use the standard notation of Lloyd (Llo87] and Apt [Apt90]. In
particular, given a syntactic construct E (so for example, a term, an atom or a set of equa
tions) we denote by Var(E) the set of the variables appearing in E. Given a substitution
(} = {z1/t1, ... , z,,./4.} we denote by Dom(O) the set of variables {z1, ... , Zn}, by Range(8) the
set of terms {ti. ... , tn}, and by Ran(O) the set of variables appearing in {t1, ... , tn}· Finally,
we define Var(O) = Dom(O) U Ran(O).

Recall tha.t a substitution (} is called grov.nding if Ran(8) is empty, and is called a renaming
if it is a permutation of the variables in Dom(O). Given a substitution(} and a set of variables
V, we denote by 8jV the substitution obtained from 0 by restricting its domain to V.

2 Occur-check Free Programs

We start our considerations by recalling a unifi.cation algorithm due to Martelli and Montanari
[MM82]. We use below the notions of sets and of systems of equations interchangingly. Two
atoms can unify only if they have the same relation symbol. With two atoms p(s1 , ••• , s,.)
and p(t1 , •• ., tn) to be unified we associate the set of equations { s1 = t1 , ••• , s,. = t,.}. In the
applications we often refer to this set as p(si. ... , s,.) = p(ti. ... , t,.). The algorithm operates on
such finite sets of equations. A substitution(} such that s18 = t1 (}, .•• , snO = t,.8 is called a unifier
of the set of equations {s1 = t1 1 ••• , s,. = tn}· Thus the set of equations E = { s1 = ti, ... , s,. = tn}
has the same unifiers as the atoms p(si. ... , sn) and p(ti, ... , tn)·

A unifier (} of a set of equations Eis called a most general unifier (in short mgv.) of E if it
is more general than all unifiers of E. An mgu 8 of a set of equations E is called relevant if
Var(8) !;,; Var(E).

A set of equations is called solved if it is of the form {z1 = ti, ... , Zn = tn} where the Zi's are
distinct variables and none of them occurs in a term t;.

The following unification algoritlun will be used in the sequel.

MAR.TELLI-MONTANAR.I ALGORITHM

Nondeterministically choose from the set of equations an equation of a form below and perform
the associated action.

(1) /(s1 1 ••• , s,.) = f(ti. ... , tn) replace by the equations
81 = ti, ... ,Sn. = tn,

(2) f(si. ... , s,.) = g(t1 1 ••• , t,,.) where f ¥. g halt with failv.re,

(3) z=z delete the equation,

(4) t = z where t is not a variable replace by the equation z = t,
(5) z = t where z ¥. t, z does not occur in t perform the substitution {z/t}

and z occurs elsewhere in every other equation,

(6) z = t where z ¥. t and :z: occurs in t halt with failure.

The algorithm terminates when no action can be performed or when failure arises. To keep
the formulation of the algorithm concise we identified here constants with 0-ary functions. Thus
action (2) includes the case of two different constants.

71

The following theorem holds (see Martelli and Montanari (MM82]).

Theorem 2.1 {Unification) The Martelli-Montanari algorithm always terminates. If the ori
ginal set of equations E has a unifier, then the algorithm successfully terminates and produces
a solved set of equations determining a relevant mgu of E, and otheTWise it terminates with
failure. O

The Martelli-Montanari algoritlun does not generate all mgu's of a set of equations E but
the following lemma, proved in Lassez, Marriot and Maher [LMM88], will allow us to cope with
this peculiarity.

Lemma 2.2 Let 81 and 82 be mgu 's of a set of equations. Then for some renaming T/ we have
92 = 91TJ· 0

The test ":z: does not occur in t" in action (5) of the Martelli-Montanari algorithm is called
the occur-check. In most Prolog implementations the occur-check is omitted. By omitting the
occur-check in (5) and deleting action (6) from the Martelli-Montanari algorithm we are still
left with two options depending on whether the substitution {z/t} is performed in t itself. If it
is, then divergence can result, because :z: occurs in t implies that z occurs in t{ z/t}. If it is not
(as in the case of the modified version of the algorithm just mentioned), then an incorrect result
can be produced, as in the case of the single equation :z: = f (x) which yields the substitution
{z/ /(z)}.

None of these alternatives is desirable. It is natural then to seek conditions which guarantee
that, in absence of the occur-check, in all Prolog evaluations of a given goal w .r. t. a given program
unification is correctly performed. This leads us to the following notion due to Deransart,
Ferrand and Teguia [DFT91).

Definition 2.3 A set of equations Eis called not subject to occur-check (NSTO in short) if in
no execution of the Martelli-Montanari algorithm started with E action (6) can be performed.

D

We now introduce the key definition of the paper.

Definition 2.4

• Let e be an LD-derivation. Let A be an atom selected in e and H the head of the input
clause selected to resolve A in{. Suppose that A and H have the same relation symbol.
Then we say that the system A= H is considered in e.

• Suppose that all systems of equations considered in the LD-derivations of P U { G} are
NSTO. Then we say that P U { G} is occur-check free. D

This definition assumes a specific unification algoritlun but allows us to derive precise results.
In contrast, no specific unification algorithm in the definition of the LD-resolution is assumed.

By Theorem 2.1 if a considered system of equations is unifiable, then it is NSTO, as well.
Thus the property of being occur-check free rests exclusively upon those considered systems
which are not unifiable. As in the definition of the occur-check freedom all LO-derivations of
PU{ G} are considered, all systems of equations that can be considered in a possibly backtracking
Prolog evaluation of a goal G w.r.t. the program P are taken into account.

In Deransart, Ferrand and Teguia [DFT91] a related concept of an NSTO program is studied
which essentially states that, independently of the selection rule and the resolution strategy

72

chosen, all considered systems are NSTO. The definition of the occur-check freedom refers to
the leftmost selection rule, so the results we obtain are usually incompatible with those dealing
with NSTO programs.

The aim of this paper is to offer simple syntactic conditions which imply that P U { G} is
occur-check free. It is useful to note the following.

Lemma 2.5 The problem whether a set of equations is NSTO, is decidable. 0

Lemma 2.5 provides a method to determine whether a given set of equations is NSTO.
However, it is not easy to apply it. Instead, we shall use a result due to Deransart, Ferrand and
Teguia [DFT91]. We need some preparatory definitions first.

Definition 2.6

• We call a family of terms (resp. an atom) linear if every variable occurs at most once in
it.

• We call a set of equations left linear (resp. right Linear) if the family of terms formed by
their left-hand (resp. right-hand) sides is linear. D

Thus a family of terms is linear iff no variable has two distinct occurrences in any term and
no two terms have a variable in common.

Definition 2. 7 Let E be a set of equations. We denote by -> E the following relation defined
on the elements of E:
e1 --+ E e2 iff the left-hand side of e1 and the right-hand side of e2 have a variable in common. O

In particular, if a variable occurs both in the left-hand and right-hand side of an equation e
of E, then e-> E e.

We can now state the result proved by Deransart, Ferrand and Teguia [DFT91].

Lemma 2.8 (NSTO) Suppose that the equations in E can be oriented in such a way tliat the
resulting system F is left linear and the relation -+ F is cycle-free. Then E is NSTO. O

The original formulation of this lemma is slightly stronger, but for our purposes the above
version is sufficient.

3 Moded Programs

For a further analysis we introduce modes.

Definition 3.1 Consider an n-ary relation syn1bol p. By a mode for p we mean a function dp
from{l, ... ,n}totheset {+,-}. Ifdp(i) ='+',we calli an inputpositionofpandifdp(i) = '-',
we call i an output position of p (both w .r. t. dp).

We write dp in a more suggestive formp(dp(l), ... ,dp(n)). o
Modes indicate how the arguments of a relation should be used. This definition assumes

one mode per relation in a program. Multiple modes may be obtained by simply renaming the
relations. From now on we assume that every considered relation has a mode associat.ed with it.
This will allow us to talk about input positions and output positions of an atom. Throughout
the paper, given an atom A, we denote by Varin(A) (resp. VarOut(A)) the set of variables
occurring in the input (resp. output) positions of A. Similar notation is used for sequences of
atoms.

We now introduce the following concepts.

73

Definition 3.2

• An atom is called input (resp. output) linear if the family of terms occW"ring in its input
(resp. output) positions is linear.

• An atom is called input-output disjoint if the family of terms occurring in its input positions
has no variable in common with the family of terms occurring in its output positions. 0

The following lemma is crucial.

Lemma 3.3 (NSTO via Modes) Consider two atoms A and H with the same relation sym
bol. Suppose that

• they have no variable in common,

• one of them is input-output disjoint,

• one of them is input linear and the other is output linear.

Then A = H is NSTO.

Proof. Suppose first that A is input-output disjoint and input linear and H is output linear.
Let if, . .. , i! (resp. if, ... , i!f.) be the terms filling in the input positions of A (resp. H) and
of, . .. , o~ (resp. o{1 , . .. , o[!) the terms filling in the output positions of A (rebp. H).

The system under consideration is

E = {if = i{l, .. . , i! = i![., of = o{i, .. . , o~ = o[!}.

Reorient it as follows:

F - {;A - ;H ;A - ;JI OH - oA OH - oA} - •1 - •1 > • • '' •m - •m• l - 1 > • • •1 n - n ·

By assumption A and H have no variable in common. This implies that

• Fis left-linear (because additionally A is input linear and His output linear),

• the equations if = i1J have no successor in the --> F relation and the equations of =of
have no predecessor (because additionally A is input-output disjoint).

Thus by the NSTO Lemma 2.8 A= II is NSTO. The proofs for the remaining three cases
are analogous and omitted. D

We now prove two results allowing us to conclude that PU { G} is occur-check free. The first
one uses the following notion due to Dembinski and Maluszynski (DM85a].

Definition 3.4 We call an LD-derivation data driven if all atoms selected in it are ground in
their input positions. D

Theorem 3.5 Suppose that

• the head of every clause of P is output linear,

• all LD-derivations of P U { G} are data driven.

Then P U { G} is occur-check free.

74

Proof. By the NSTO via Modes Lemma 3.3. 0

The second result uses the following notion.

Definition 3.6 We call an LO-derivation outpu.t driven if all atoms selected in it are output
linear and input-output disjoint. D

Theorem 3. 7 Suppose that

• the head of every clause of P is inpu.t linear,

• all LD-derivations of P U { G} are output driven.

Then P U { G} is occur-check free.

Proof. By the NSTO via Modes Lemma 3.3. 0

This theorem is implicit in Chadha and Plaisted [CP91] (see the proof of their Theorem 2.2).
So far we isolated two properties of LO-derivations, each of which implies occur-check free

dom. In both cases we had to impose some restrictions on the heads of the clauses. When we
combine these two properties we get occur-d1eck freedom directly.

Theorem 3.8 Suppose that

• all LD-derivations of P U { G} are both data and output driven.

Then P U { G} is occur-check free.

Proof. By the NSTO Lemma 2.8.

4 Well-moded Programs

0

The obvious problem with Theorems 3.5, 3. 7 and 3.8 is that is is not easy to check their con
ditions. In fact, one can show that in general it is undecidable whether for a given program P
and goal G the conditions of Theorem 3.5, 3. 7 or 3.8 hold.

The aim of this section is to propose some syntactic restrictions that imply the conditions
of Theorems 3.5. We then show that these restrictions are satisfied by a nwnber of well-known
programs.

We use here the notion of a well-moded program. The concept is due to Dembinski and
Maluszynski [DM85a); we use here an elegant formulation due to Rosenblueth [Ros91] (which
is equivalent to that of Drabent [Dra87] where well-moded programs are called simple). The
defmition of a well-moded program constrains the "flow of data" through the clauses of the
programs. To simplify the notation, when writing an atom as p(u, v), we now assume that u is
a sequence of terms filling in the input positions of p and that v is a sequence of terms filling in
the output positions of p.

Definition 4.1

• A goal +- P1(s1, ti), ... ,pn(sn, tn) is called well-moded if for i E [1, n)

i-1

Var(si) ~ LJ Var(tj):
i=l

75

• A clause Po(to,sn+t) +-p1(s1,t1),. .. ,p,.(sn,tn) is called well-moded if for i E [1,n+ 1]

i-1

Var(si) ~ LJ Var(tj)·
j=O

• A program is called well-moded if every clause of it is well-moded. 0

Note that a goal with only one atom is well-moded ilf this atom is ground in its input
positions. The definition of a well-moded program is designed in such a way that the following
theorem due to Dembinski and Maluszynski [DM85a] holds.

Theorem 4.2 Let P and G be well-moded. Then all LD-derivations of PU { G} are data driven.
0

This theorem brings us to the following conclusion.

Corollary 4.3 Let P and G be well-moded. Suppose tJiat

• the head of every clause of P is output linear.

Then P U { G} is occur-check free.

Proof. By Theorems 3.5 and 4.2.

This corollary can be easily applied to a nwnber of well-known Prolog programs.

0

Example 4.4 Below, when presenting the programs we adhere to the usual syntactic conven
tions of Prolog with the exception that Prolog's ":-"is replaced by the logic programming"<-".
{i) Consider the program append:

app([X I Xs], Ys, [X I Zs]) +- app(Xs, Ys, Zs).
app(D, Ys, Ys).

with the moding app (+, +, -) . It is easy to check that append is then well-moded and that the
head of every clause is output linear. By Corollary 4.3 we conclude that for s and t ground,
append U { <- app (s, t, u)} is occur-check free.

(ii) Consider now the program append witll the moding app(- ,- , +). Again, by Corollary 4.3,
we conclude that for u ground, append U { +- app(s, t, u)} is occur-check free.

(iii) Consider the program permutation which consists of the clauses

perm(Xs, [X I Ys]) <
app(Xls, [I I X2s], Xs),
app(Xls, X2s, Zs),
perm(Zs, Ys).

perm([], 0).

augmented by the append program.

76

We use here the following modings: perm (+, -) , app (- , - , +) for the first call to append and
app (+, + , -) for the second call to append.

It is easy to check that permutation is then well-moded and that the heads of all clauses
are output linear. By Corollary 4.3 we get that for s ground, permutation U { +- perm(s, t)}
is occur-check free.

(iv) Consider now the program quicksort which consists of the clauses

qs([I I Is], Ys) +-

partition(I, Is, Littles, Bigs),
qs(Littles, Ls),
qs(Bigs, Bs),
app(Ls, (X I Bs], Ys).

qs ([] • []) .

partition(I, [Y I Is], [Y I Ls], Bs)
partition(!, [Y I Is], Ls, [Y I Bs])
partition(I, []' [], []).

augmented by the append program.

<- I > Y, partition(X,
<- I ~ Y, partition(!,

Xs, Ls, Bs).
Is, Ls, Bs).

We mode it as follows: qs(+,-), partition(+,+,-,-), app(+,+,-). Again, it is easy to
check that quicksort is then well-moded and that the heads of all clauses are output linear. By
Corollary 4.3 we conclude that for s ground, quicksort U { +- qs (s, t)} is occur-check free.

(v) Finally, consider the program palindrome:

palindrome(Is) +- reverse(Xs, ls).
reverse(Iis, I2s) +- reverse(Us, [], I2s).
reverse ([I I Xis] , X2s, Ys) <- reverse (Xis, [I I X2s] , Ys) .
reverse([], Is, Is).

We mode it as follows: palindrome (+),reverse (+, -) , reverse (+, +, -) . Then palindrome
is well-moded and the heads of all clauses are output linear. By Corollary 4.3 we conclude that
for s ground, palindrome U { <- palindrome (s)} is occur-check free. D

5 Nicely Moded Programs

The above conclusions are still of a restrictive kind, because in each case we had to asswne
that the input positions of the one atom goals are gronnd. To alleviate this restriction we now
consider some syntactic restrictions that imply the conditions of Theorem 3. 7.

The following notion was introduced in Chadha and Plaisted [CP91}. (We found essentially
the same concept independently, though later; the name and formulation are ours.)

Definition 5.1

• A goal <- P1(s1, t1), ... ,pn(sn, tn) is called nicely moded if t1, ... , tn is a linear family of
terms and for i E [1, n]

n

Var(Sj) n (u Var(tj)) == 0.
i=i

77

• A clausepo(so,to) +-p1(s1,t1), ... ,p,,.(sn,tn) is called nicely moded if
+-- P1(si, ti), .. .,p,,.(sn, tn) is nicely moded and

n

Var(so) n (LJ Var(tj)) = 0.
j=l

• A program is called nicely moded if every clause of it is nicely moded. 0

Thus, assuming that in every atom the input positions occur first, a goal is nicely moded if
every variable occurring in an output position of an atom does not occur earlier in the goal.

And a clause is nicely moded if every variable occurring in an output position of a body
atom occurs neither earlier in the body nor in an input position of the head.

Note that a goal with only one atom is nicely moded iff it is output linear and input-output
disjoint. The following theorem clarifies our interest in nicely moded programs.

Theorem 5.2 Let P and G be nicely moded. Then all LD-derivations of PU {G} are output
driven.

The proof is quite complicated and requires a number of lemmas. The first one allows us lo
search for mgu's in an iterative fashion.

Lemma 5.3 Let E1, E 2 be two sets of equations. Suppose that 01 is a relevant mgu of E1 and
02 is a relevant mgu of E201. Then 0182 is a relevant mgu of E1 U Ez. Moreover, if E1 U E2 is
unifiable then 81 exists and for any such Bi an appropriate 02 exists, as well. 0

Lemma 5.4 Let 0 be a substitution and s and t sequences of terms such that

• Var(s) n Var(t) = 0,

• Ran(BI Var(s)) n Ran(OI Var(t)) = 0,

• Var(s) n Ran(81 Var(t)) = 0,

• Var(t) n Ran(81Var(s))=0.

Then Var(s8) n Var(tB) = 0. 0

The next two le.mmas use the following notion.

Definition 5.5 A substitution { zi/ti. ... , Zn/tn.} is called linear if ti, ... , tn is a linear family
of terms. D

Lemma 5.6 Let (J be a substitution and t a family of terms. Suppose that

• () is linear,

• t is linear,

• Ran(B) n Var(t) = 0.

Then tO is a linear family of terms, as well. 0

The following lemma is stated in Deransart and Maluszynski [DM85b].

78

Lemma 5. 7 Consider two atoms A and H with the same relation symbol. Suppose that

• they have no variable in common,

• A is linear.

Assume that A and H are unifiable. Then there exists a relevant mgu B of A and H such that

• BI Var(H) is linear,

• Ran(B!Var(H)) ~ Var(A). 0

Finally, we establish the following lemma.

Lemma 5.8 Consider two atoms A and H with the same relation symbol. Suppose that

• they have no variable in common,

• A is input-output disjoint and output linear.

Assume that A and H are unifiable. Then there exists a relevant mgu B of A and H such that

for V = VarOut(H) - Varin(H), T/1 = BIV and T/2 = OI Varin(H)

(i) T/l is linear,

(ii) Ran(71i) ~ Var(A),

(iii} Ran(712) n (Ran(111) UV)= 0.

Proof. Let if, ... , i! (resp. if, ... , i~) be the terms filling in the input positions of A (resp.
H) and of, .. ., 0: (resp. of, ... , o;{) the terms filling in the output positions of A (resp. H).
Let 81 be the relevant mgu of {of = o{I, .. . , o~ = o~} constructed in the proof of Lemma 5. 7.
By the disjointness of A and H we have B11Var(H) = 011VarOut(H), so by Lenuna 5.7

OiJ Var(H) is linear (1)

and
Ran(Oil Var(H)) ~ VarOut(A). (2)

Let 02 be a relevant mgu of {if = if,. .. , i! = i!'!;}fJi. By Lemma 5.3 02 exists and 0 = fJi02

is a relevant mgu of A = H.
By the relevance of 01 we have Dom(01) ~ VarOut(A) U VarOut(II), so by the input-output

disjointness of A and the disjointness of A and H we get {if = if, ... , i! = i!}01 = {if =
i{f01, ... ,i! = i;!Oi}.

By the relevance of 02 we have Var(02) <;;; Var({if = if! 01 , ... , i! = i;f. Oi}) <;;; Var In(A) u
Var!n(H) U Ran(01I Varin(H)).

Thus, by the disjointness of A and H and (2),

Var(02) n V = 0.

For the same reasons and additionally by the input-output disjointness of A and (1)

Var(02) n Ran(IJ1 jV) = 0.

Now, (3) and (4) imply that

(3)

(4)

79

T/l = 01 iv. (5)

Thus T/1 ~ 011Var(II), so by (1) we conclude (i) and by (2) we conclude (ii).
Consider now T/2· Note that T/2 ~(Oil Varln(H)) 02 , so

Ran(T/2) ~ Ran(01I Varln(JI)) U Var(Oz). (6)

But by (1), (4), (2), disjointness of A and H, and (3)

(Ran(Oil Varln(H)) U Var(02)) n (Ran(01jV) UV)= 0,

so by (6) and (5) we conclude (iii). D

Note that the first atom of a nicely moded goal is output linear and input-output disjoint,
and a variant of a nicely moded clause is nicely moded. Thus to prove Theorem 5.2 it suffices to
prove the following lemma which shows the "persistence" of the notion of being nicely moded.

Lemma 5.9 An LD-resolvent of a nicely moded goal and a disjoint with it nicely moded clause
is nicely moded.

Proof. We start by proving three claims.

Claim 1 Suppose that A and H satisfy the assumptions of Lemma 5.8 and assume that 0 is a
relevant mgu of A = JI which satisfies conditions (i) - (iii) of Lemma 5.8. Let JI<- B be a
nicely moded clause with no variables in common with A. Then <-BO is nicely moded.

Proof Below, by the standardization apart we mean the assumption that H <- B and A have
no variables in common. Let V, 771 and ri2 be as in the formulation of Lemma 5.8.

Let 01 = OI VarOut(B) and 02 = OI(Varln(B)-- VarOut(B)). We first establish some cla.in1s
a.bout 01 and 02 • By the standardization a.part and the definition of a nicely moded clause

VarOut(B) n (Var(A) u Var(H)) ~ V,

so by the fact that 0 is relevant

01 ~ T/1·

Thus by the linearity of 771 (condition (i) of Lemma 5 .8)

01 is linear.

Moreover, by (8), (ii) of Lemma 5.8 and standardization a.part

Ran(01) n Var(B) = 0.

Now, let O~ = 02IV and O~ = 02 !Varln(II). We have

02 = o~ u o~,
o~ ~ ri1,

(7)

(8)

(9)

{10)

(11)

(12)

80

and
{13)

Consider now o;. We have Dom(Oi) n Dom(02) = 0, so Dom(01) n Dom(O~) = 0. Thus, by
(8), (12) and the linearity of 7]1

Ran(O~) n Ran(01) = 0

Moreover, by (12), (ii) of Lemma 5.8 and the standardization apart

Ran(O~) n VarOut(B) = 0.

Consider now O~. By (8), (13) and (iii) of Lemma 5.8 we get

Ran(O~) n Ran(fh) = 0.

(14)

(15)

(16)

Also, by the fact that 0 is relevant Ran(O~) ~ Var(A)U Var(H), so by (7) Ran(O~)n VarOut(B) ~
V. Thus by (13) and (iii) of Lemma 5.8

Ran(O~) n VarOut(B) = 0.

Combining (14) with (16) and (15) with (17) we get by virtue of (11)

Ran(02) n (Ran(01) u VarOut(B)) = 0.

{17)

(18)

Now,let us consider B more in detail. Suppose B = P1(s1, ti), .. .,pn(sn, tu)· By assumption

t1, ... , t 11 is a linear family of terms and for i E (1, n) tiO = ti01. So by (9), (10) and Lenuna
5.6 ti 0, . .. , t 110 is a linear family of terms, as well.

Fix now i E [1, n] and j E [i, n]. We have

(19)

and

(20)

<- B is nicely moded, so
Var(si) n Var(tj) = 0. (21)

Thus by the linearity of 01 Ran(01I Var(si)) n Ran(Oi [Var(tj)) = 0, and consequently by {19),
{20) and (18)

Ran(OJVar(si)) n Ran(OJVar(tj)) = 0. (22)

Next, by (20) and (10)
Var(si) n Ran(OI Var(tj)) = 0. (23)

Finally, by {19), (10) and (18)

Var(tj) n Ran(OI Var(si)) = 0. (24)

Now, by (21), (22), (23), (24) and Lemma 5.4 we conclude that Var(s10) n Var(tjO) = 0.
This proves that <- BO is nicely moded. o

Claim 2 Let 0 be a substitution and <- A a nicely moded goal such that Var(0) n VarOut(A) =
0. Then <-AO is nicely moded, as well.

81

Proof. For any terms and a substitution <T we have Var(s<T) ~ Var(s) u Var(<T). Moreover, for
any term t occurring at an output position of A by the assumption about 0 we have tO = t. The
claim now follows by the definition of a nicely moded goal. D

Claim 3 Suppose +--A and +-- B are nicely moded goals such that VarOut(A) n Var(B) = 0.
Then +-- B, A is a nicely moded goal, as well.

Proof. Immediate by the definition of a nicely moded goal. D

Consider now a nicely moded goal +-- A, A and a disjoint with it nicely moded clause H +-- D,
such that A and lI unify. Observe that A and H satisfy the assumptions of Lemma 5.8. Assume
now that fJ is a relevant mgu of A= H which satisfies conditions (i) - (iii) of Lemma 5.8. By
Claim 1 +-- BO is nicely moded.

fJ is relevant and Var(A) n VarOut(A) = 0, so by the standardization apart

Var(B) n VarOut(A) = 0. (25)

By Claim 2 +-- AO is nicely moded.

But (25) implies that VarOut(AfJ) = VarOut(A). Moreover, Var(BO) ~ Var(B) U Var(B)

and by the standardization apart VarOut(A) n Var(B) = 0, so, again by (25),

VarOut(AB) n Var(BB) = 0. (26)

Now (26) establishes the last assumption of Claim 3 with +--A replaced by +-AO and

+- B replaced by +-BO. We conclude by Claim 3 that the LD-resolvent +-- (B,A)O of the goal
+- A, A and the clause H +-- B is nicely moded.

0 is just one specific rogu of A = H. By Lemma 2.2 every other mgu of A = H is of the form

811 for a renaming T/· But a renaming of a nicely moded goal is nicely moded, so we conclude
that every LD-resolvent of +-- A, A and H +- Il is nicely moded. D

This brings us to the following conclusion.

Corollary 5.10 Let P and G be nicely moded. Suppose that

• the head of every clause of P is input linear.

Then P U { G} is occur-check free.

Proof. By Theorems 3.7 and 5.2. 0

This corollary is stated in Chadha and Plaisted [CP91] as a direct consequence of Theorem
3.7 without mentioning Theorem 5.2. In our opinion the latter theorem is necessary to draw

the above conclusion. Pierre Deransart (private communication) pointed out to us that this

corollary is a consequence of Theorem 4.1 in Deransart, Ferrand and Teguia (DFT91] whose
conditions are satisfied for a nicely moded program Panda nicely moded goal G. This actually
suggests a stronger result, namely that such a P and G is NSTO.

It is worthwhile to note that to prove Corollary 5.10 it is actually sufficient to prove Lemma
5.9 under the assumption that the head of every clause of P is input linear. The proof is

considerably simpler than that of Lemma 5.9.
This corollary ca.11 be easily applied to the previously studied programs.

82

Example 5.11
(i) Consider again the program append with the moiling app (+, +, -) • Clearly, append is nicely
moded and that the head of every clause is input linear. By Corollary 5.10 we conclude that
when u is linear and Var(u) n Var(s, t) = 0, append U { <- app(s, t, u)} is occur-check free.

(ii) With the moding app(-, - , +) the program append is nicely moded, as well, and the head
of every clause is input linear. Again, by Corollary 5.10 we conclude that when s, t is a linear
family of terms and Var(u)n Var({s, t})::: 0, append U { <- app(s, t, u)} is occur-check free.

(iii) Reconsider now the program permutation with the modings as before. Again, it is easy
to check that permutation is nicely moded and that the heads of all clauses are input linear.
By Corollary 5.10 we get that when t is linear and Var(s) n Var(t) = 0, permutation u
{ +- perm(s, t)} is occur-check free.

(iv) Consider again the program quicksort with the modings as before. Again, Corollary 5.10
applies and we conclude that when t is linear and Var(s) n Var(t) = 0, quicksort U { <- qs(s,
t)} is occur-check free.

(v) So far it seems that Corollary 5.10 allows us to draw more useful conclusions that Corollary
4.3. However, reconsider the program palindrome. In Chadha and Plaisted [CP91] it is shown
that no moding exists in which palindrome is nicely moded with the heads of all clauses being
input linear. Thus Corollary 5.10 cannot be applied to this program. o

Finally, let us mention that Chadha and Plaisted (CP91] proposed two efficient algorithms
for generating modings with the minimal number of input positions, for which the program
is nicely moded. These algorithms were implemented and applied to a nwnber of well-known
Prolog programs.

6 Strictly Moded Programs

Finally, we consider syntactic restrictions that imply the condition of Theorem 3.8. To this end
it is sufficient to combine the properties of being well-moded and nicely moded.

Definition 6.1

• A goal +-- P1 (si, t1), ... , Pn.(sn, t 11) is called strict if ti, ... , t 11 is a linear family of terms.

• A clause H +-- B is called strict if <- B is strict.

• A program is called strict if every clause of it is strict.

• A goal (clause) (program) is called strictly moded if it is both strict and well-moded. O

Theorem 6.2 Let P and G be strictly moded. Then all LD-derivations of P U { G} are both
data and output driven.

Proof. Omitted.

Corollary 6.3 Let P and G be strictly moded. Then P U { G} is occur-check free.

Proof. By Theorems 6.2 and 3.8.

0

0

83

7 Conclusions

The aim of this paper was to provide simple syntactic conditions which imply that for a given
program P and goal G, PU { G} is occur-check free. To apply the established results one needs
to find appropriate modings for the considered relations such that the conditions of one of the
established Corollaries (4.3, 5.10 or 6.3) are satisfied. In the table below several programs taken
from the book of Sterling and Shapiro [SS86] are listed. (A similar analysis of the notion of a
well-moded program was carried in Drabent (Dra87]). For each program it is indicated which
of the relevant conditions for a given moding are satisfied. All built-in's are moded completely
input.

In programs which use difference lists we replaced "\" by ",", thus splitting a position filled
in by a difference list into two positions. Because of this change in some relations additional
arguments are introduced, and so certain clauses have to be modified in an obvious way. For
example, in the parsing program on page 258 each clause of the form p(I) ~ r(I) has to be
replaced by p (I, Y) ...- r (I, Y). Such changes are purely syntactic and they allow us to draw
conclusions about the occur-check freedom of the original program.

The modings considered are usually intuitive and at least one of the Corollaries 4.3, 5.10 or
6.3 applies. This indicates that the established results are widely applicable and thus justifies
the title of this paper.

program page moding

member 45
member 45

prefix 45
prefix 45

suffix 45
suffix 45

naive reverse 48

reverse-accum. 48

delete 53

select 53

insertion sort 55

tree-member 58
tree-member 58

(-,+)
(+,+)

(-,+)
(+,+)

(-,+)
(+,+)

r(+,-)
a{+,+,-)

r(+,-)
r(+,+,-)

(+,+,-)

(+,+,-)

s(+,-)
i(+,+,-)

(-,+)
(+,+)

well
moded

yes
yes

yes
yes

yes
yes

yes

yes

yes

yes

yes

yes
yes

heads nicely
out. lin. moded

yes
yes

yes
yes

yes
yes

yes

yes

yes

yes

yes

yes
yes

yes
yes

yes
yes

yes
yes

yes

yes

yes

yes

yes

yes
yes

heads strictly
in. lin. moded

yes
no

yes
no

yes
no

yes

yes

no

no

yes

yes
no

yes
yes

yes
yes

yes
yes

yes

yes

yes

yes

yes

yes
yes

84

isotree 58 (+,+) yes yes yes no yes

substitute 60 (+,+,+,-) yes yes yes no yes

pre-order 60 p(+,-) yes yes yes yes yes
a(+,+,-)

in-order 60 i(+,-) yes yes yes yes yes
a(+,+,-)

post-order 60 p(+,-) yes yes yes yes yes
a(+,+,-)

polynomial 62 (+,+) yes yes yes no yes

derivative 63 (+,+,-) yes no yes no yes

hanoi 64 h(+,+,+,-) yes yes yes yes yes
a(+,+,-)

append_dl 241 (+,-,+,+,-,-) yes yes yes yes yes
append_dl 241 (+,-,+,-,-,-) no no yes yes no

fl.atten_dl 241 f(+,+) yes yes yes no yes
Ldl(+,+,-)

flatten 243 f(+,-) yes yes yes yes yes
f(+,+,-)

reverse_dl 244 r(+,-) yes yes yes yes yes
r_cll(+,-,+)

quicksort dl 244 q(+,+) yes yes no yes yes
q_cll(+,+,-)
p(+,+,-,-)

dutch 246 dutch(+,-) yes yes yes yes yes
di(+,-,-,-)

dutch_dl 246 dutch(+,-) yes yes yes yes yes
di(+,-,+,-,+,-,+)

parsing 258 all (+,-) yes yes yes yes yes

P.S. Of course, you would like to know to which two programs from Sterling and Shapiro [SS86]
we could not apply the results of this paper. These are flatten_dl (program 15.2 on page 241):
and quicksort_dl (program 15.4 on page 244).

85

The appropriate entry in the table above indicates that, after replacing"\" by ",",in the
mode flatten(+,+) and tlattenJil(+,+,-), flatten_dl is well-moded and the heads of the
clauses are output linear. Thus by virtue of Corollary 4.3 for sand t ground, all LD-derivations
of flatten_dl U { +-- flatten(s, t)} are occur-check free. Similar conclusion can be drawn
about quicksort_dl moded qs(+,+) and qs_dl(+,+,-).

However, no conclusion can be drawn for the modes flatten(+,-) and qs(+,-) in which
these two programs are customarily used. Indeed, it is easy to check that for both programs no
completion of the moiling exists for which the program is well-moded, or nicely moded and with
the heads of all clauses being input linear.

A solution to this problem is proposed in Pellegrini [Pel92] and for the space reasons omitted
here.

Acknowledgement

We thank Pierre Deransart for constructive remarks on the subject of this paper.

References

[Apt90] K. R. Apt. Logic programming. In J. van Leeuwen, editor, Handbook of Theoretical
Computer Science, pages 493-574. Elsevier, 1990. Vol. B.

[CP91) R. Chadha and D.A. Plaisted. Correctness of UIUfLcation without occur check in Pro
log. Technical report, Department of Computer Science, University of North Carolina,
Chapel Hill, N.C., 1991.

[DFT91] P. Deransart, G. Ferrand, and M. Teguia. NSTO programs (not subject to occur
check). In V. Sara.swat and K. Ueda, editors, Proceedings of the International Logic
Symposium, pages 533-547. The MIT Press, 1991.

[DM85a] P. Dembinski and J. Maluszynski. AND-parallelism with intelligent backtracking for
armotated logic programs. In Proceedings of the International Symposium on Logic
Programming, pages 29-38, Boston, 1985.

[DM85b] P. Deransart and J. Maluszynski. Relating Logic Programs and Attribute Grammars.
Journal of Logic Programming, 2:119-156, 1985.

(Dra87] W. Drabent. Do Logic Programs Resemble Programs in Conventional Languages?
In International Symposium on Logic Programming, pages 389-396. San Francisco,
IEEE Computer Society, August 1987.

[Llo87] J. W. Lloyd. Foundations of Logic Programming. Springer-Verlag, Berlin, second
edition, 1987.

[LMM88] J.-L. Lassez, M. J. Maher, and K. Marriott. Unification Revisited. In J. Minker,
editor, Foundations of Deductive Databases and Logic Programming, pages 587-625.
Morgan Kaufmann, Los Altos, Ca., 1988.

[MM82] A. Martelli and U. Montanari. An efficient unification algorithm. ACM Transactions
on Programming Languages and Systems, 4:258-282, 1982.

86

(Pel92] A. Pelle!,'I'ini. Sul problema dell' "occur check" in Prolog. Technical report, Depart
ment of Computer Science, University of Padova, Padova, Italy, 1992. Tesi di Laurea,
in Italian, to appear.

[Pla84] D.A. Plaisted. The occur-check problem in Prolog. In Proc. International Conference
on Logic Programming, pages 272-280. IEEE Computer Science Press, 1984.

(Ros91] D.A. Rosenblueth. Using program transformation to obtain methods for eliminating
backtracking in fixed-mode logic programs. Technical Report 7, Universidad Nacional
Autonoma de Mexico, Instituto de Investigaciones en Matematicas Aplicadas y en
Sistemas, 1991.

(SS86] L. Sterling and E. Shapiro. The Art of Prolog. MIT Press, 1986.

