8 research outputs found

    Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI

    Get PDF
    In the last few years, Artificial Intelligence (AI) has achieved a notable momentum that, if harnessed appropriately, may deliver the best of expectations over many application sectors across the field. For this to occur shortly in Machine Learning, the entire community stands in front of the barrier of explainability, an inherent problem of the latest techniques brought by sub-symbolism (e.g. ensembles or Deep Neural Networks) that were not present in the last hype of AI (namely, expert systems and rule based models). Paradigms underlying this problem fall within the so-called eXplainable AI (XAI) field, which is widely acknowledged as a crucial feature for the practical deployment of AI models. The overview presented in this article examines the existing literature and contributions already done in the field of XAI, including a prospect toward what is yet to be reached. For this purpose we summarize previous efforts made to define explainability in Machine Learning, establishing a novel definition of explainable Machine Learning that covers such prior conceptual propositions with a major focus on the audience for which the explainability is sought. Departing from this definition, we propose and discuss about a taxonomy of recent contributions related to the explainability of different Machine Learning models, including those aimed at explaining Deep Learning methods for which a second dedicated taxonomy is built and examined in detail. This critical literature analysis serves as the motivating background for a series of challenges faced by XAI, such as the interesting crossroads of data fusion and explainability. Our prospects lead toward the concept of Responsible Artificial Intelligence, namely, a methodology for the large-scale implementation of AI methods in real organizations with fairness, model explainability and accountability at its core. Our ultimate goal is to provide newcomers to the field of XAI with a thorough taxonomy that can serve as reference material in order to stimulate future research advances, but also to encourage experts and professionals from other disciplines to embrace the benefits of AI in their activity sectors, without any prior bias for its lack of interpretability.Basque GovernmentConsolidated Research Group MATHMODE - Department of Education of the Basque Government IT1294-19Spanish GovernmentEuropean Commission TIN2017-89517-PBBVA Foundation through its Ayudas Fundacion BBVA a Equipos de Investigacion Cientifica 2018 call (DeepSCOP project)European Commission 82561

    Explainable Artificial Intelligence (XAI): Concepts, Taxonomies, Opportunities and Challenges toward Responsible AI

    Get PDF
    In the last few years, Artificial Intelligence (AI) has achieved a notable momentum that, if harnessed appropriately, may deliver the best of expectations over many application sectors across the field. For this to occur shortly in Machine Learning, the entire community stands in front of the barrier of explainability, an inherent problem of the latest techniques brought by sub-symbolism (e.g. ensembles or Deep Neural Networks) that were not present in the last hype of AI (namely, expert systems and rule based models). Paradigms underlying this problem fall within the so-called eXplainable AI (XAI) field, which is widely acknowledged as a crucial feature for the practical deployment of AI models. The overview presented in this article examines the existing literature and contributions already done in the field of XAI, including a prospect toward what is yet to be reached. For this purpose we summarize previous efforts made to define explainability in Machine Learning, establishing a novel definition of explainable Machine Learning that covers such prior conceptual propositions with a major focus on the audience for which the explainability is sought. Departing from this definition, we propose and discuss about a taxonomy of recent contributions related to the explainability of different Machine Learning models, including those aimed at explaining Deep Learning methods for which a second dedicated taxonomy is built and examined in detail. This critical literature analysis serves as the motivating background for a series of challenges faced by XAI, such as the interesting crossroads of data fusion and explainability. Our prospects lead toward the concept of Responsible Artificial Intelligence, namely, a methodology for the large-scale implementation of AI methods in real organizations with fairness, model explainability and accountability at its core. Our ultimate goal is to provide newcomers to the field of XAI with a thorough taxonomy that can serve as reference material in order to stimulate future research advances, but also to encourage experts and professionals from other disciplines to embrace the benefits of AI in their activity sectors, without any prior bias for its lack of interpretability

    Explainable Artificial Intelligence (XAI): What we know and what is left to attain Trustworthy Artificial Intelligence

    Get PDF
    This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2021R1A2C1011198) , (Institute for Information & communications Technology Planning & Evaluation) (IITP) grant funded by the Korea government (MSIT) under the ICT Creative Consilience Program (IITP-2021-2020-0-01821) , and AI Platform to Fully Adapt and Reflect Privacy-Policy Changes (No. 2022-0-00688).Artificial intelligence (AI) is currently being utilized in a wide range of sophisticated applications, but the outcomes of many AI models are challenging to comprehend and trust due to their black-box nature. Usually, it is essential to understand the reasoning behind an AI mode ľs decision-making. Thus, the need for eXplainable AI (XAI) methods for improving trust in AI models has arisen. XAI has become a popular research subject within the AI field in recent years. Existing survey papers have tackled the concepts of XAI, its general terms, and post-hoc explainability methods but there have not been any reviews that have looked at the assessment methods, available tools, XAI datasets, and other related aspects. Therefore, in this comprehensive study, we provide readers with an overview of the current research and trends in this rapidly emerging area with a case study example. The study starts by explaining the background of XAI, common definitions, and summarizing recently proposed techniques in XAI for supervised machine learning. The review divides XAI techniques into four axes using a hierarchical categorization system: (i) data explainability, (ii) model explainability, (iii) post-hoc explainability, and (iv) assessment of explanations. We also introduce available evaluation metrics as well as open-source packages and datasets with future research directions. Then, the significance of explainability in terms of legal demands, user viewpoints, and application orientation is outlined, termed as XAI concerns. This paper advocates for tailoring explanation content to specific user types. An examination of XAI techniques and evaluation was conducted by looking at 410 critical articles, published between January 2016 and October 2022, in reputed journals and using a wide range of research databases as a source of information. The article is aimed at XAI researchers who are interested in making their AI models more trustworthy, as well as towards researchers from other disciplines who are looking for effective XAI methods to complete tasks with confidence while communicating meaning from data.National Research Foundation of Korea Ministry of Science, ICT & Future Planning, Republic of Korea Ministry of Science & ICT (MSIT), Republic of Korea 2021R1A2C1011198Institute for Information amp; communications Technology Planning amp; Evaluation) (IITP) - Korea government (MSIT) under the ICT Creative Consilience Program IITP-2021-2020-0-01821AI Platform to Fully Adapt and Reflect Privacy-Policy Changes2022-0-0068

    On the Design, Implementation and Application of Novel Multi-disciplinary Techniques for explaining Artificial Intelligence Models

    Get PDF
    284 p.Artificial Intelligence is a non-stopping field of research that has experienced some incredible growth lastdecades. Some of the reasons for this apparently exponential growth are the improvements incomputational power, sensing capabilities and data storage which results in a huge increment on dataavailability. However, this growth has been mostly led by a performance-based mindset that has pushedmodels towards a black-box nature. The performance prowess of these methods along with the risingdemand for their implementation has triggered the birth of a new research field. Explainable ArtificialIntelligence. As any new field, XAI falls short in cohesiveness. Added the consequences of dealing withconcepts that are not from natural sciences (explanations) the tumultuous scene is palpable. This thesiscontributes to the field from two different perspectives. A theoretical one and a practical one. The formeris based on a profound literature review that resulted in two main contributions: 1) the proposition of anew definition for Explainable Artificial Intelligence and 2) the creation of a new taxonomy for the field.The latter is composed of two XAI frameworks that accommodate in some of the raging gaps found field,namely: 1) XAI framework for Echo State Networks and 2) XAI framework for the generation ofcounterfactual. The first accounts for the gap concerning Randomized neural networks since they havenever been considered within the field of XAI. Unfortunately, choosing the right parameters to initializethese reservoirs falls a bit on the side of luck and past experience of the scientist and less on that of soundreasoning. The current approach for assessing whether a reservoir is suited for a particular task is toobserve if it yields accurate results, either by handcrafting the values of the reservoir parameters or byautomating their configuration via an external optimizer. All in all, this poses tough questions to addresswhen developing an ESN for a certain application, since knowing whether the created structure is optimalfor the problem at hand is not possible without actually training it. However, some of the main concernsfor not pursuing their application is related to the mistrust generated by their black-box" nature. Thesecond presents a new paradigm to treat counterfactual generation. Among the alternatives to reach auniversal understanding of model explanations, counterfactual examples is arguably the one that bestconforms to human understanding principles when faced with unknown phenomena. Indeed, discerningwhat would happen should the initial conditions differ in a plausible fashion is a mechanism oftenadopted by human when attempting at understanding any unknown. The search for counterfactualsproposed in this thesis is governed by three different objectives. Opposed to the classical approach inwhich counterfactuals are just generated following a minimum distance approach of some type, thisframework allows for an in-depth analysis of a target model by means of counterfactuals responding to:Adversarial Power, Plausibility and Change Intensity

    Explainable AI and Interpretable Computer Vision:From Oversight to Insight

    Get PDF
    The increasing availability of big data and computational power has facilitated unprecedented progress in Artificial Intelligence (AI) and Machine Learning (ML). However, complex model architectures have resulted in high-performing yet uninterpretable ‘black boxes’. This prevents users from verifying that the reasoning process aligns with expectations and intentions. This thesis posits that the sole focus on predictive performance is an unsustainable trajectory, since a model can make right predictions for the wrong reasons. The research field of Explainable AI (XAI) addresses the black-box nature of AI by generating explanations that present (aspects of) a model's behaviour in human-understandable terms. This thesis supports the transition from oversight to insight, and shows that explainability can give users more insight into every part of the machine learning pipeline: from the training data to the prediction model and the resulting explanations. When relying on explanations for judging a model's reasoning process, it is important that the explanations are truthful, relevant and understandable. Part I of this thesis reflects upon explanation quality and identifies 12 desirable properties, including compactness, completeness and correctness. Additionally, it provides an extensive collection of quantitative XAI evaluation methods, and analyses their availabilities in open-source toolkits. As alternative to common post-model explainability that reverse-engineers an already trained prediction model, Part II of this thesis presents in-model explainability for interpretable computer vision. These image classifiers learn prototypical parts, which are used in an interpretable decision tree or scoring sheet. The models are explainable by design since their reasoning depends on the extent to which an image patch “looks like” a learned part-prototype. Part III of this thesis shows that ML can also explain characteristics of a dataset. Because of a model's ability to analyse large amounts of data in little time, extracting hidden patterns can contribute to the validation and potential discovery of domain knowledge, and allows to detect sources of bias and shortcuts early on. Concluding, neither the prediction model nor the data nor the explanation method should be handled as a black box. The way forward? AI with a human touch: developing powerful models that learn interpretable features, and using these meaningful features in a decision process that users can understand, validate and adapt. This in-model explainability, such as the part-prototype models from Part II, opens up the opportunity to ‘re-educate’ models with our desired norms, values and reasoning. Enabling human decision-makers to detect and correct undesired model behaviour will contribute towards an effective but also reliable and responsible usage of AI

    Characterizing model uncertainty in ensemble learning

    Get PDF

    Approches Neuronales pour la Reconstruction de Mots Historiques

    Get PDF
    In historical linguistics, cognates are words that descend in direct line from a common ancestor, called their proto-form, andtherefore are representative of their respective languages evolutions through time, as well as of the relations between theselanguages synchronically. As they reflect the phonetic history of the languages they belong to, they allow linguists to betterdetermine all manners of synchronic and diachronic linguistic relations (etymology, phylogeny, sound correspondences).Cognates of related languages tend to be linked through systematic phonetic correspondence patterns, which neuralnetworks could well learn to model, being especially good at learning latent patterns. In this dissertation, we seek tomethodically study the applicability of machine translation inspired neural networks to historical word prediction, relyingon the surface similarity of both tasks. We first create an artificial dataset inspired by the phonetic and phonotactic rules ofRomance languages, which allow us to vary task complexity and data size in a controlled environment, therefore identifyingif and under which conditions neural networks were applicable. We then extend our work to real datasets (after havingupdated an etymological database to gather a correct amount of data), study the transferability of our conclusions toreal data, then the applicability of a number of data augmentation techniques to the task, to try to mitigate low-resourcesituations. We finally investigat in more detail our best models, multilingual neural networks. We first confirm that, onthe surface, they seem to capture language relatedness information and phonetic similarity, confirming prior work. Wethen discover, by probing them, that the information they store is actually more complex: our multilingual models actuallyencode a phonetic language model, and learn enough latent historical information to allow decoders to reconstruct the(unseen) proto-form of the studied languages as well or better than bilingual models trained specifically on the task. Thislatent information is likely the explanation for the success of multilingual methods in the previous worksEn linguistique historique, les cognats sont des mots qui descendent en ligne directe d'un ancêtre commun, leur proto-forme, et qui sont ainsi représentatifs de l'évolution de leurs langues respectives à travers le temps. Comme ils portent eneux l'histoire phonétique des langues auxquelles ils appartiennent, ils permettent aux linguistes de mieux déterminer toutessortes de relations linguistiques synchroniques et diachroniques (étymologie, phylogénie, correspondances phonétiques).Les cognats de langues apparentées sont liés par des correspondances phonétiques systématiques. Les réseaux deneurones, particulièrement adaptés à l'apprentissage de motifs latents, semblent donc bien un bon outil pour modéliserces correspondances. Dans cette thèse, nous cherchons donc à étudier méthodiquement l'applicabilité de réseaux deneurones spécifiques (inspirés de la traduction automatique) à la `prédiction de mots historiques', en nous appuyantsur les similitudes entre ces deux tâches. Nous créons tout d'abord un jeu de données artificiel à partir des règlesphonétiques et phonotactiques des langues romanes, que nous utilisons pour étudier l'utilisation de nos réseaux ensituation controlée, et identifions ainsi sous quelles conditions les réseaux de neurones sont applicables à notre tâched'intérêt. Nous étendons ensuite notre travail à des données réelles (après avoir mis à jour une base étymologiquespour obtenir d'avantage de données), étudions si nos conclusions précédentes leur sont applicables, puis s'il est possibled'utiliser des techniques d'augmentation des données pour pallier aux manque de ressources de certaines situations.Enfin, nous analysons plus en détail nos meilleurs modèles, les réseaux neuronaux multilingues. Nous confirmons àpartir de leurs résultats bruts qu'ils semblent capturer des informations de parenté linguistique et de similarité phonétique,ce qui confirme des travaux antérieurs. Nous découvrons ensuite en les sondant (probing) que les informations qu'ilsstockent sont en fait plus complexes : nos modèles multilingues encodent en fait un modèle phonétique de la langue, etapprennent suffisamment d'informations diachroniques latentes pour permettre à des décodeurs de reconstruire la proto-forme (non vue) des langues étudiées aussi bien, voire mieux, que des modèles bilingues entraînés spécifiquement surcette tâche. Ces informations latentes expliquent probablement le succès des méthodes multilingues dans les travauxprécédents
    corecore