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Abstract
The undeniable emergence of Big Data analytics is considered as one of the enablers to support
decision-makers in their complexity increasing processes. This thesis explored the use of causal
and interpretable predictive analytics in operational decision-making, specifically in the context of
emergency maintenance order fulfillment in the Customer Supply Chain Management department
(CSCM) of ASML, a leading semiconductor company. The study aimed to explore how this approach
can be used to identify the most effective sourcing solution, defined as the option with the lowest
cost and highest feasibility, in order to minimize redundant checks in the current decision-making
process. To answer this research question, the study compared the performance of machine learning
(ML) models using causal techniques to traditional ML techniques. It also explored the use of ML
Interpretability methods for model validation, improvement, and knowledge discovery, and considered
the potential benefits of integrating model abstention into the best ML prediction model. The results
demonstrated that the suitability of Causal ML in the problem setting described may be questionable
due to the limitations of this method on currently available algorithms and the difficulty of meeting
the necessary conditions for successful causal inference in a problem with limited causal data and
operational decision-making. The results from the used global ML Interpretability techniques first
needed to be converted to an easier interpretable format before they could properly be used for
model validation and knowledge discovery with SMEs and stakeholders. Yet, the use of global
ML Interpretability techniques for model improvement showed only a minor increase in predictive
performance. The use of a sequentially learned ambiguity abstention model demonstrated how it
could improve the predictive performance for the non-rejected cases, which could increase end-users’
trust in the model and still remove redundant checks by only requiring planners to use the current
workflow for the rejected cases.

Keywords:
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Executive Summary

Introduction
Increasing complexity and demand for explainability in operational decision-making calls for the
adoption of Big Data, analytics, and AI to assist decision-makers [Gartner, 2021]. The use of Machine
Learning (ML) in operations management and supply chain management has been recognized as a
useful tool [Baryannis et al., 2019,Topan et al., 2020]. Despite the recent advances in ML, researchers
raise their concerns about the lack of robustness, inability to connect causes and effects, explainability
and interpretability in "traditional" ML methods [Pearl, 2019, Schölkopf, 2022]. Yet, the latter
obstacles are particularly important for an AI solution to be valuable in the domain of supply chain
management [Baryannis et al., 2019]. Causal ML is the study of how to use ML techniques to infer
causal relationships between variables in a certain problem, and ought to be the solution to the earlier
mentioned obstacles. In response to the need for explainability and interpretability, recent research has
focused on both developing interpretable models and methods for generating explanations. [Carvalho
et al., 2019], and can be applied for model validation, model improvement, and knowledge discovery [Du
et al., 2019]. Despite this emergence, there is still no consensus on the processes and routines for these
purposes [Molnar, 2020], especially in operational decision-making in the supply chain management
domain [Baryannis et al., 2019]. Also, the presence of unavoidable noise and uncertainties results in
mispredictions [Chow, 1970], which eventually can lead to bad decisions and low end-user trust [Yin
et al., 2019]. One approach to address these issues is through the use of abstention models, which are
designed to refrain from making a prediction when the model is uncertain. These models are often
used in high-stakes domains such as healthcare, but their application in operational decision-making
remains limited, despite their potential benefits.

ASML, an innovative, semiconductor industry leader, aspires data-driven decision-making. In
particular, ASML’s customer supply chain management department aspires the use of ML to become
more data-driven in its decision-making in its mission to fulfill the demands and needs of its customers.
Specifically, the current decision-making process in its emergency maintenance order fulfillment process
follows a static workflow designed to decrease overall high labour and activity costs. Accordingly,
planners from the global operations center investigate the cheapest and most occurring solutions first
until a feasible solution is found, which results in many redundant checks.

The objective of this thesis was to explore how causal and interpretable predictive analytics
can support operational decision-making in an emergency maintenance order sourcing process. We
conducted an exploratory case study to determine how this approach could be used to identify the
most effective sourcing solution, defined as the option with the lowest cost and highest feasibility, to
minimize redundant checks.

Research Questions
From the above, we formed the following main research question:

"How can causal and interpretable predictive analytics be used to support ASML’s global
operations center planners in choosing the most effective sourcing solution within the
emergency maintenance order sourcing process?"

In order to answer this research question, we defined the following sub-research questions.

1. How can Causal ML be used to predict the most effective sourcing solution?

2. How do Causal ML models compare with traditional ML prediction techniques when applied to
predicting the most effective sourcing solution?

3. How can ML Interpretability methods be used for model validation and improvement, and knowledge
discovery?

4. How can the best ML prediction model be enhanced with model abstention?

ii Causal and Interpretable Predictive Analytics in Operational Decision Making for Emergency
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Methodology
We employed a tailored version of the CRISP-DM process model [Wirth and Hipp, 2000], a widely
used and industry-agnostic approach for data mining and knowledge discovery projects, as shown in
Figure 1. The iterative nature of the model allowed us to progress through the various phases, like
general Data Understanding and Preparation, and address the sub-research questions.

Business 
Understanding

Data 
Understanding

Data 
Preparation

ModelingEvaluation

ML 
Interpretability Data

Figure 1: Research framework
based on CRISP-DM [Wirth and
Hipp, 2000]

First of all, we defined our evaluation metrics. The ML
model’s Precision was deemed more important for expensive
solutions, as we would not want to mispredict those solutions.
Whereas we do not want to miss out on cheap solutions, and
thus deem Recall more important for these solutions. For the
purpose of Causal ML, we used the causal policy learner Doubly
Robust Random Forest Policy Learner (DRRFPL). This model
first learns the causal effects and compensates for bad models of
past treatments or outcome variables with good models of the
opposite, which was needed as our outcome variable was sparse,
i.e. we only have data on the most effective solutions. This policy learner then builds a multitude of
decision trees with the objective function to treat as many samples correctly as possible. To address
the issues of outcome sparsity and class imbalance, we conducted experiments using synthetic control
samples to provide contrast for the model, as well as resample techniques to mitigate the impact of the
class imbalance. We selected the best set-up and compared this to traditional ML. For this purpose,
we used a manually developed Random Forest Classifier (RFC), and AutoML by Azure. The former
method is known to attain high accuracy and still be interpretable, while the latter allows to quickly
search a multitude of different ML methods regardless the extent of interpretability.

For the purpose of knowledge discovery, model validation and improvement with ML Interpretability,
we mainly used global ML Interpetability methods. These types of ML Interpretability methods
describe the average behaviour of a ML model. We used these methods to gain insights and presented
them to SMEs for model validation and knowledge discovery. Next to that, we visualized different
methods to discover subgroups within the data that were mispredicted. Based on the insights, we
developed a set of Model Debug Opportunities (MDOs) with the goal of enhancing the performance
of the best prediction model. These MDOs were then evaluated and compared to the best ML model.

Finally, we designed an abstention model for our best prediction model that rejected predictions for
which the model is uncertain (ambiguity). We learned this model sequentially to the ML model, as this
would enhance interpretability, and we optimized the thresholds to reject with a genetic algorithm, for
convenience and domain appropriateness. Next, we estimated the costs saved per Emergency Order
(EMO) if a planner would have executed the checks for the predicted or optimal solution, allowing
us to compare the different workflows. For EMOs that were not the most effective, we used the
cumulative costs until the most effective was reached according to the predicted class probabilities by
the ML model.

Results and Discussion
Firstly, we compared the different Causal ML set-ups. None of the solutions scored well on the set
performance metrics, despite differences in performance per class and individual metrics. All the tested
setups contained a preferential bias towards the cheapest solution and majority class Unrestricted.
We presumed that this bias was coming from either data to algorithm or algorithm to user, but
later concluded that it was mainly coming from the former one, which reflects on the measurement,
omitted variable and representation bias. Besides, the causal assumptions were violated which could
have affected the performances strongly. For example, we could not include all confounding variables
because of data availability constraints. The poor predictive performances would not only lead to
poor decision-making, but also hindered the ability to extract causal knowledge.

Next, we compared the best-performing Causal ML model to traditional ML methods (RFC and
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AutoML) and found that the traditional ML models generally outperformed the Causal ML model.
We mainly presumed that this came from bigger noise in the features that are learned to be causal
compared to the features that were learned not important for Causal ML in line with the work of
Fernández-Loría and Provost (2022). Besides, the objective function of the policy learner reflected
on the accuracy rather than our performance metrics. Between the two traditional ML methods, we
observed the same prediction behaviour and performance. Still, the models missed out on a substantial
part of the minority solutions, which again underlined the bias towards the majority solution.

In the interest of ML Interpretability, we applied various interpretability methods to gain insights
into the ML prediction model. These methods mainly agreed on the feature importance rankings.
Further analysis revealed the relationship between the predicted probability for a particular solution
and different values for each important feature. We generally observed similar patterns for the
minority classes, where a few features were found to be useful for distinguishing between solutions.
The results and insights from this analysis could be used to validate the model with SMEs and
eventually stakeholders. While the more sophisticated interpretability methods were difficult for SMEs
to understand, summarizing and highlighting particularities allowed for proper model validation with
both SMEs and stakeholders.

Workflow
Costs

(min)

Savings

(min)

Current 11,759 N/A

Without rejection 11,128 631

With rejection 10,773 986

Optimal 6,170 5,589

Table 1: Costs and savings
realized on the test set

Lastly, after choosing the design of the abstention model, we
analyzed the current prediction uncertainty for the ML model’s
(mis)predictions per solution. This uncovered that the model
was fairly sure about its mispredictions on the solution majority
solution (median = 0.76), but less sure about its mispredictions
on minority solutions (median = 0.59), which once again exhibited
the present bias. Subsequently, we designed and optimized the
abstention model. As can be seen in Table 1, using the ML
prediction model would realize savings, where an abstention model
would increase these savings, but both are not close to the optimal
workflow (no redundant checks).

Conclusion and recommendations
With the findings of this thesis, we conclude and recommend the following:

• Based on the assumptions and conditions of causal inference, the suitability of Causal ML in our
problem setting may be questionable. In a problem with limited causal data and operational
decision-making, it may be difficult to meet all necessary conditions for success with this ML
method. While the chosen Causal ML method was useful for multi-class classification, its
black-box characteristic and limited objective function may be limiting factors as well.

• Presumably because of the above given explanations, traditional ML still remains a better option
as it can rely on non-causal but more informative data which contain less noise. Besides, AutoML
stood out as a method to quickly obtain a model comparable to a manually developed ML model,
regardless of its current limitations. Businesses should explore this field of AutoML in order to
save time on developing models and ramp up the quantity while remaining quality.

• The use of global ML Interpretability methods allowed to validate the model with business, but
did not contribute significantly to diminishing the bias and improving the model. Subsequently,
future research should examine the use of local ML Interpretability methods for this purpose.

• The use of a sequentially learned ambiguity abstention model showed an increase in predictive
performance for non-rejected cases, which may increase user trust in the model, and also reduced
redundant checks by requiring planners to only follow the current workflow for rejected cases.
We showed that the workflow with abstention resulted in cost savings of 56% compared to the
workflow without abstention. Though, to realize the optimal potential benefits of this approach,
the base ML model performance should be improved.
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1 Introduction
Making optimal decisions in operational decision-making is becoming increasingly challenging.
According to a recent Gartner survey, 65% of the respondents indicated that the complexity and
involvement of stakeholders in decision-making processes are increasing [Gartner, 2021]. Additionally,
53% of the respondents indicated they feel greater pressure to explain or justify their decisions. With an
increase in data-driven solutions in automating such processes, human decision-makers certainly should
not be swapped. In fact, the emergence of (Big) Data, analytics and AI should be embraced in order
to support and complement human decision-makers in their tasks. Accordingly, ASML, an innovative
semiconductor industry leader, aspires data-driven decision-making. Specifically, in ASML’s Customer
Supply Chain Management (CSCM) department’s mission to fulfill the demands and needs of their
customers, they live up to their vision: “We team up with technology for a predictable, no-touch and
circular supply chain network, thereby maximizing efficiency and minimizing our footprint".

The emergence of Machine Learning (ML) has not remained unnoticed in the discipline of operations
management in combination with Big Data analytics [Topan et al., 2020]. Even more, ML has achieved
extraordinary capabilities with the continuous theoretical developments and increasing computational
power systems. Despite the recent advances in ML solutions, researchers raise their concerns on the
neglectful use of these "traditional" ML methods [Pearl, 2019,Schölkopf, 2022], pertaining to the lack
of explainability and interpretability, robustness, the inability to connect causes and effects. Instead,
they propose Causal ML, which overcomes these obstacles with the proper embodiment of Causal
Inference. In line with the first mentioned concern, AI solutions for operational decision-making
in a supply chain context are ought to be predominantly valuable if they are made interpretable
and justified [Baryannis et al., 2019]. Despite this awareness, Causal ML and ML Interpretability are
understudied in this field of operational decision-making. In a case study conducted at ASML’s CSCM
department, we explore how causal and interpretable predictive analytics can be used in operational
decision-making for emergency maintenance order fulfillment.

This chapter explains the reasoning behind this research. It provides an overview of the business
context, prospective, scope, and problem statement, and then presents a brief literature review and
discusses the business and scientific relevance of the study. Together, they led to the development of
the research question and sub-research questions for this study.

1.1 Business description

This research is commissioned by Advanced Semiconductor Materials Lithography (ASML) which
is one of the world’s leading designers and manufacturers of the lithography machines that are an
essential component in chip manufacturing. ASML’s customers are companies such as Intel, who use
machines in ‘fabs’ – microchip manufacturing plants – to create microchips that are eventually used in
many electronic devices, including smartphones, laptops and much more. Within this semiconductor
industry, ASML is an innovation leader and provides their customers with everything they need –
hardware, software and services – to mass produce patterns on silicon, allowing them to increase the
value and lower the cost of a chip. The industry is driving Moore’s Law into the next decade, enabling
global megatrends like 5G, AI, HPC, VR/AR, autonomous vehicles. As a result of the sky-rocketing
chip demand caused by these trends, ASML needs to further develop its existing and new machines.

1.2 Problem context

With the purpose of answering the needs in machine availability of ASML’s customers, after-sales
service is included as a product. This enables less machine downtime because of transparent and
controlled customer supply chain management. To keep the machines produced by ASML operational,
they are (preventively) maintained. The materials required for this are kept in stock in various
warehouses around the world which can be distinguished into two levels: local warehouses, and central
warehouses. Next to these warehouses, there is also stock stored at the ASML factory, and ASML’s

Causal and Interpretable Predictive Analytics in Operational Decision Making for Emergency
Maintenance Order Fulfillment: a Case Study at ASML

1



suppliers if the material cannot be received yet. When one or more materials are needed at a customer’s
site, a Service Order (SO) is created. Besides maintenance orders being a SO, also other types of events,
like installations or machine upgrades, also become a SO. However, for the sake of this research, we
use SO as a term for maintenance order as it is used like this within ASML. The material sourcing
of the SOs is fulfilled by automation engines, but also manually when automation is not possible or
a feasible (unrestricted stock available) and on time (lead time does not exceed the time to Ultimate
Need Date (UND)) solution cannot be found.

The moment a customer’s machine breaks down and needs corrective maintenance, a SO is created
in which the necessary materials are requested for the fastest possible delivery. To distinguish the
priority of a SO, this type of SO is called an Emergency Order (EMO). The Global Emergency
Support Automation (GESA) system is responsible for finding a fitting solution for the EMO and
tries to source the needed materials. However, if no feasible solution for sourcing a material for the
EMO can be found, the sourcing challenge is forwarded to the Global Operations Center (GOC),
which is located in Taiwan and operates 24/7, to find a suitable solution. A possible solution would
then be to get the part from the factory in Veldhoven. By performing various checks, the GOC knows
which (bundle of) activities it must perform in order to realize a suitable solution. These decisions are,
just as the automatic systems, also based on business rules. Besides SOs for corrective maintenance
being EMOs, a total or item(s) from initially non-emergent SOs belonging to preventive maintenance
can become emergent as well. This can be the result of, for example, parts that arrived broken at the
customer because of quality issues, whereafter a new demand is generated for this SO item, or stock
reservations are manually overruled by planners, whereafter no feasible solution can be found anymore
for a specific SO item.

The manual EMO sourcing process and its phases can be found in Figure 2. When a SO is
requested on emergency and GESA cannot fulfill this order, the GOC receives this order (phase 0).
Next on, GOC gives a first response with an initial action plan and preliminary Estimated Time of
Arrival (ETA) to give the CS engineer at the customer’s site a status update (phase 1). Subsequently,
a GOC planner picks up the SO and starts performing checks to find a feasible sourcing solution (phase
2). When a feasible solution is found, it may need to be checked physically for its availability inside or
outside ASML’s network (phase 3). After availability confirmation, the ETA will be confirmed, and
a delivery notification will be created when the material is made available (phase 4). The SO is now
sourced and transported to the local warehouse, while in the meantime this is monitored by the GOC
as well (phase 5).
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As explained above, the process starts when the SO is received by the GOC. A GOC planner
picks up the order and performs multiple checks on the SO (phase 2). This checking phase is called
request preliminary checks. Every set of checks can be seen as an investigation of a sourcing solution,
e.g. checking if an alternative material is available. However, when a set of checks shows solution
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infeasibility, the planner moves on to the next set of checks. So, in some cases, the first set of checks
can already give a feasible solution after which the process ends, but in some cases, it can take a
lot more time to find a feasible solution, as multiple sets of checks have to be executed. This makes
the lead time and processing time uncertain. Planners follow one workflow for the process which is
designed to minimize the sourcing time. The first sets take less time for the planner, are less dependent
on other teams, are in general less costly, and will result in less (planning) disruptions than later sets.
For example, the checks start with analyzing the stock positions beginning with regional to worldwide
warehouses, but checks in a later set will analyze the repair status of a material at ASML’s factory. As
the case may be, planners have to wait for information on the checks because of for example contact
with other teams. The average time spent by a GOC planner is 20 minutes and can vary from 10 to
80 minutes, but is strongly dependent on material availability and thus on how many sets of checks
have to be performed. When planners cannot find a feasible solution after performing all the checks,
the EMO will be escalated. In case of escalation, the shift lead, and in some cases the manager of the
GOC, will be involved in the process. Together, they will try to find a feasible solution by contacting
for example suppliers.

1.3 Prospective

ASML’s CSCM department has set a dream state of the operating framework in which it wishes
to operate its supply chain by 2025. This dream state is oriented towards achieving three targets:
becoming 80% predictable, 90% no touch, and 100% circular supply chain. Predictability could for
example be knowing upfront that an event, such as maintenance, would happen, or estimating lead
times with high accuracy. No touch refers to handling its supply chain documents in an automated
manner, e.g. handling a SO, without manual activities. Finally, a circular supply chain focuses for
example on the remake and reuse of leftover materials. The current situation status for every pillar is
not yet known, but they can still be improved up to their targets. Within ASML’s CSCM department,
becoming more data-driven is believed to be a critical enabler for the achievement of the set targets.
In conformity with the above, its vision "We team up with technology for a predictable, no-touch and
circular supply chain network, thereby maximizing efficiency and minimizing our footprint" plays a
central role in its mission to deliver material to its customers in the field on time, in full, and at the
right quality and cost.

Furthermore, due to the increasing demand in the chip industry, ASML is expected to grow
significantly in the coming years. This increases the pressure on the GOC considerably and the current
way of working would require a higher workforce to meet the requested UNDs in time. The end-to-end
support lead time Service Level Agreement (SLA) for this type of request is 72 hours, which is made up
of 24 hours sourcing lead time and 48 hours physical shipment. However, due to the pressure on both
sourcing and physical shipment, this is currently not being achieved. Besides the increasing pressure
from the customer, anecdotal evidence shows that staffing is also becoming an increasing challenge.
The pool of new talent is shrinking, and ASML cannot hire new employees exponentially within the
GOC. As a result of the increasing workload and the challenge in staffing, ASML will have to work
differently and smarter to address this challenge and meet customers’ demands.

1.4 Scope

In order to better investigate the request preliminary checks phase process, its problems, causes, and
relationships among each other, an in-depth analysis was performed. This was done with the use of
a cause and effect analysis, which is visualized in Figure 3. There were four main causes for the high
workload and eventual delay in SO fulfillment. Though, Inefficient collaboration would be tackled by
an improvement team within ASML, and Sourcing more than needed is out of this scope as it is a
result of planning and forecasting and covering contingencies to decrease downtime. Therefore, this
research was focused on the inefficient process design and inefficient sourcing.
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1.5 Business problem statement

As explained earlier, the particular set(s) of checks which will lead to a feasible solution is not known
at the beginning of the process. The current decision-making process on which checks to perform is
following a static workflow designed to decrease overall high labour and activity costs. This frequently
results in planners performing unsuccessful checks, which makes the checks in some sense redundant.
Hence, the time spent on these redundant sets of checks could be seen as inefficient use of time. As a
result, the set SLAs are currently not met, and set UND of SOs are potentially delayed. Consequently,
customer satisfaction can decrease, which is especially the case for machine hard-downs. Summarizing,
we proposed the following business problem statement:

Business problem statement
The current manual EMO sourcing process at ASML has an inefficient process design due to the
execution of redundant checks, resulting in not meeting SLAs.

1.6 Literature review

With the previously defined prospective, scope and business problem in mind, we conducted a literature
review in order to gain knowledge on current (state-of-the-art) methods and techniques to solve the
before mentioned business problem. Moreover, we aimed at identifying the relations and gaps in
research, and how this work would contribute to current literature.

Managing and improving business processes is known in both literature and business as Business
Process Management (BPM), and can be used to redesign processes [van der Aalst et al., 2003]. With
the exponential growth of data, known as Big Data, BPM is becoming even more data driven [Wamba
and Mishra, 2017]. The integration of Big Data analytics in decision-making processes has proven to
enhance this process [Elgendy and Elragal, 2016]. In particular data science and predictive analytics
are promising disciplines in achieving these enhancements for supply chain management [Waller and
Fawcett, 2013]. Within ASML, a great amount of different (contextual) data is currently available,
such as material (master) data and historical stock data. At present, this information stays underused
in the decision-making for the process in our scope. Considering CSCM’s ambition to become more
data-driven, the focus of this literature review was from a data perspective.
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Big Data in operational decision-making
With the evidently growing amount of data coming in the five V’s: Velocity, Volume, Value, Variety
and Veracity, Big Data is one of the drivers of Industry 4.0 [Zhou et al., 2015]. The field of service
and manufacturing supply chain management has been embracing this digitization, and showed how it
can enhance (operational) decision-making [Eichengreen and Gupta, 2013,Waller and Fawcett, 2013],
in for example sourcing processes, [Sanders, 2016], by applying Big Data analytics. Nevertheless,
literature lacks empirical research on applying Big Data analytics in supply chain and/or operational
decision-making [Sanders, 2016], especially in the domain of after-sales service logistics [Topan et al.,
2020]. Whereas current research focuses on proactively intervening in sourcing and replenishment
processes, already ongoing processes are understudied [Topan et al., 2020]. ML is currently one of the
most important and emerging techniques in the discipline of operations management in combination
with Big Data analytics [Choi et al., 2018]. ML systems have been able to achieve greater predictive
performance and, for most of them, increased complexity due to the exponential development in
heterogeneous data collection and vast amount of computational power [Jordan and Mitchell, 2015],
but still has some pitfalls and limitations, which is explained in the next sections.

Causal Machine Learning
Recent studies [Pearl, 2019,Schölkopf, 2022] raise concerns about traditional ML methodologies that
are currently most used in decision-making processes with ML [Hünermund et al., 2022]. Robustness
or adaptation is one of the concerns as research in ML has shown that present systems are unable
to recognize or respond to new situations for which they have not been specially taught or designed.
Another challenge is explainability, as a majority of the ML models remain mainly black boxes and
are unable to provide the justifications for their predictions. As a result, this reduces the user’s
trust or a system developer’s ability to diagnose biases. The inability to connect causes and effects
is the third concern, which Pearl (2019) considers as "a necessary (though not sufficient) ingredient
for achieving human-level intelligence". Pearl (2019) and Scholkopf (2022) argue that these obstacles
can be overcome when traditional ML is enriched with causal modelling tools, which can be called
Causal Machine Learning (Causal ML) [Schölkopf, 2022]. Recently, a range of studies, see for instance
[Bozorgi et al., 2020], [Bozorgi et al., 2021], or [Shoush and Dumas, 2022b], have tried to support
decision-making in business processes by applying uplift modelling, which is a group of techniques
used to estimate the incremental effect of certain actions [Gutierrez and Gérardy, 2017]. Further,
Kallus and Zhou (2018) and Athey and Wager (2021) argue that Causal ML based policy learning,
evaluation, and optimization can lead to optimal data-driven decisions. These types of predictive
and prescriptive analytics are based on traditional ML techniques but implicate Causal Inference.
The induction of Causal Inference in ML can enable the transition from association, i.e. correlation,
based reasoning to counterfactual reasoning, which is the ultimatum in causality [Pearl, 2019]. With
this counterfactual reasoning, we can also answer questions about interventions and observations, and
overcome the earlier mentioned obstacles of traditional ML. Even though the previously mentioned
authors showed promising results, they agree that more empirical research should be conducted.

ML Interpretability
The second concern mentioned by Pearl (2019), reflected on the inability to explain or interpret the
majority of the currently existing and used ML models. Specifically, a majority of them and their
applications lack transparency, interpretability, verifiability, and explainability [Carvalho et al., 2019].
As a result, ML system designers are not aware of biases such as discriminatory decisions against
particular people or groups, or wrong decisions in healthcare caused by this bias [Mehrabi et al.,
2021, Caton and Haas, 2020]. In the context of this research, Baryannis et al. (2019) suggest that
outcomes from AI solutions must be interpretable and justified in the context of supply chains if
they ought to be valuable and able to be included into supply chain resource management related
decision-making processes. Next to the system developer’s need for ML Interpretability, it could also
be needed for explaining certain predictions to the end-user in order to get trusted. Explainable
Artificial Intelligence (XAI), which focuses research on ML Interpretability and seeks to make a shift
toward a more transparent AI, emerged as a field of study in an effort to address this issue, as being
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both relevant to industry and society. In consequence, the development and current available ML
Interpretability techniques are increasing [Molnar, 2020]. These techniques can also be used for other
purposes. Du et al. (2019) defined the three applications: model validation, knowledge discovery,
and model debugging/improvement. Despite the increasing attention in research, there are still no
well-defined processes and routines to utilize ML Interpretability techniques [Molnar, 2020].

ML prediction abstention
While ML prediction models can achieve excellent predictive performance, they can perform worse
for some of the regions in the sample population where it is more difficult to differentiate between
classes. Because of uncertainties and noise inherent in any pattern recognition task, errors are generally
unavoidable [Chow, 1970]. As a matter of fact, mispredictions can lead to bad decisions, and negatively
affect end-users’ trust [Yin et al., 2019]. Hence, being careful about samples for which the ML model
has a higher uncertainty could be helpful. Even so, Senge et al. (2014) contend that "a trustworthy
representation of uncertainty is desirable and should be considered as a key feature of a ML method".
Abstaining from a prediction or prescription on samples for which there is high uncertainty seems
to accomplish above described goal [Hendrickx et al., 2021, Kompa et al., 2021], and, yet, a closely
related field to ML Interpretability [Brinkrolf and Hammer, 2018]. Model abstention because of
uncertainty can result in improved predictive performance for the non-rejected samples, enhance a
decision maker’s trust, and still be beneficial in time saved as only the rejected samples do not benefit
from the model [Hendrickx et al., 2021]. Despite its attention in several safety-sensitive, medical and
economic domains [Hendrickx et al., 2021,Kompa et al., 2021], operational decision-making processes
still remains unexplored.

Synthesis
As previously stated, the emergence of ML has not gone unnoticed in operations management.
Nevertheless, there exists a lacunae in research and practice on the use of ML to support operational
decision-making, particularly for ongoing processes in sourcing and replenishment processes. Though,
the use of traditional ML comes along with obstacles, namely the inability to connect causes and effects,
the lack of robustness, explainability and interpretability. Especially the latter is considered critical in
the domain of supply chain related decision-making. Using causal inference in combination with ML is
deemed to overcome these challenges, which already showed some promising results in predictive and
prescriptive analytics for decision support in business processes. Complementary, the development
of ML Interpretability techniques allow researchers to open the black-box of ML systems, yet there
lacks empirical research on how to use such methods and techniques in practice. Finally, despite the
advantages of ML abstention models to deal with ML uncertainty, it has not been investigated in the
realm of operational decision-making where the stakes are lower, but the frequency of decision-making
is higher.

1.7 Business and scientific relevance

With regard to the scope, prospective, and business problem statement, the business objective is
actually two-sided. On the one hand, GOC planners should be supported in the decision-making
process on which set of tasks to execute in order to minimize the sourcing time. Next to the
development of such a recommendation system, knowledge should be gained about the process and
the EMOs themselves. The gained insights could eventually be used to tackle the other causes for
the order delays earlier identified in Figure 3, or for redesigning other business processes around the
current process scope. This could, for example, help in proactively decreasing the number of EMOs
and thereby decreasing the workload. Simultaneously, the exploration of these objectives contributes
to the second aspect which is the ambition of becoming more data-driven and living up to CSCM’s
set dream state.

As explained in Section 1.6, business decision-making processes improvement initiatives are often
done with traditional ML models. The neglectful deployment of this type of ML results in less
robust models, i.e. are less reliable in new situations, because the real causes and effects are not
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modeled. Since ASML and its business environment are highly dynamic and continuously changing,
new situations will obviously appear. Involving Causal Inference in such ML models could increase
robustness and decrease for example negative impact from wrong predictions or eventual prescriptions
on decision-making with high costs in new situations. Despite promising results in earlier work,
applying Causal ML for business process improvement is still in its infancy. For this reason, we want
to explore how this can be used and how it compares to traditional ML. Moreover, we explained the
benefits and necessity of interpretability of the ML models used for decision-making, in particular for
supply chain management. Despite this awareness, the use of such ML Interpretability techniques
still lacks well-defined routines and processes. In the view of ML model abstention, research showed
how this model assertion can leverage the benefit of ML systems in high-stake decision-making tasks.
However, the use of this approach in operational decision-making in business processes still remains
unexplored, while the earlier mentioned benefits could be shared in this field.

Altogether, recent work has shown promising predictive analytics methods and techniques for
accomplishing this road of becoming more data-driven and tackling the earlier stated business problem,
but with the absence of complete and detailed preliminary research in this specific context, an
exploratory case study ought to be needed.

1.8 Research questions

The research objective of this thesis was to explore how causal and interpretable predictive analytics
can support operational decision-making in an emergency maintenance order sourcing process.
Specifically, this was done with an exploratory case study conducted at ASML, where we studied
how this approach can be used for finding the most effective sourcing solution, in order to reduce the
number of redundant checks. This effectiveness was defined as the most desired outcome in a certain
situation, e.g., if both sourcing solutions 1 and 2 give a feasible solution, solution 1 is always more
desired because of the lower costs and thus most effective.
Main research question
How can causal and interpretable predictive analytics be used to support ASML’s global operations
center planners in choosing the most effective sourcing solution within the emergency maintenance
order sourcing process?

To answer this main research question, four sub-research questions were used, which can be found
below. To begin with, it should be explored how Causal ML can be used to predict the most effective
sourcing solution. With the identified gap in research on the application of this approach for predictive
analytics and the inherently different requirements, the development of such a prediction solution is not
a trivial task. Subsequently, we aimed to compare how Causal ML models compare with traditional
ML models in the same predictive task as the previous sub-research question. Yet, we liked to know if
indeed Causal ML can overcome the concerns earlier mentioned in contrast to traditional ML. Next, we
aimed to explore how ML Interpretability methods can be used for model validation and improvement,
and knowledge discovery. Finally, after obtaining the best ML prediction model, we aimed to explore
how model abstention can be used to improve this model.

1. How can Causal ML be used to predict the most effective sourcing solution?

2. How do Causal ML models compare with traditional ML prediction techniques when applied to
predicting the most effective sourcing solution?

3. How can ML Interpretability methods be used for model validation and improvement, and knowledge
discovery?

4. How can the best ML prediction model be enhanced with model abstention?
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1.9 Thesis outline

In this chapter, we explained the business and problem context, the prospective, scope and problem
statement. Subsequently, we performed a literature review with which the research objective and
questions could be formed. This thesis continues with a more in-depth literature review on related
work and state-of-the-art methods and techniques in Chapter 2. Thereafter, the methodology used to
answer the research questions is discussed in Chapter 3, and forms the structure of the further report.
Next, a general data understanding and preparation is performed in Chapter 4. Following, the four
sub-research questions are discussed in Chapter 5, 6, 7, and 8 respectively. This thesis closes with a
final conclusion, including recommendations, limitations and future research in Chapter 9.
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2 State-of-the-art
After we formulated our research objective and questions, a more in-depth literature review was
performed to acquire the needed knowledge for developing the research design and the execution
of this study. This chapter starts with a related work part where the current practices in the
domain of operational decision-making in supply chain management are discussed. Subsequently,
current state-of-the-art methods and techniques are discussed. Finally, this chapter concludes with
the methods and techniques that were chosen to be used in this research.

2.1 Related work

The three preceding industrial eras, recently referred to as Industry 1.0, 2.0, and 3.0, have led to
Industry 4.0, which was a predicted continuation of those eras [Pereira and Romero, 2017]. From a
technical standpoint, Industry 4.0 refers to a situation in which "increasing digitization and automation
as well as enhanced connectivity is facilitated by the construction of a digital value chain" [Oesterreich
and Teuteberg, 2016]. For many years, the field of service and manufacturing supply chain management
has been embracing digitization and showed that this field integrated with Big Data enables the
development of better decision-making processes [Eichengreen and Gupta, 2013]. Large financing
efforts encourage scholars and practitioners to participate in studies that can advance the development
and use of Big Data. As a result, research demonstrated that the use of Big Data analytics can be
applied across the supply chain, involving sourcing processes [Sanders, 2016]. However, it still received
little attention compared to other domains according to Baryannis et al. (2019). Despite the fact that
businesses have an optimistic perception toward Big Data, the literature on Big Data in business is
highly scattered and lacks empirical inputs according to Sanders (2016). Next to that, Frank et al.
(2019) argued that the implementation of Big Data analytics in manufacturing companies is often
poorly done. A deeper comprehension of how Big Data might boost the value creation of supply
chain management processes is required to solve this theoretical gap and to provide guidance for
practitioners in this domain.

Looking at the scope of this thesis, it can be placed in the domain of after-sales service logistics.
Topan et al. (2020) reviewed current practices in operational spare parts service logistics for service
control towers. Specifically, they state that simple (business) rules or manual problem-solving based
on expert knowledge is currently most used for operational planning problem-solving. Next to that,
they argue that the current focus in research is mainly on proactively intervening in sourcing and
replenishment processes, and a literature gap exists in processes for orders that have already started.
Whereas, identifying the conditions which make an intervention optimal and measuring its consequence
would help decision makers to select the best intervention.

Choi et al. (2018) reviewed various existing Big Data-related analytics techniques in operations
management, and asserted by stating that this discipline, which focuses on the optimal use of
resources to increase operational effectiveness and efficiency, should embrace the chance to adapt to Big
Data. The authors emphasize the potential of using ML as a powerful tool to achieve this purpose.
Complementary, Bastani et al (2022) studied the applications of different ML methods, including
supervised, unsupervised, and reinforcement learning, in various areas of operations management,
with goals ranging from descriptive to prescriptive analytics. One of the future directions discussed
is using Causal Inference in ML for case-based decision-making in operations management, which can
be defined as Causal ML, and will be addressed in Section 2.2.1.

In the context of supply chains, Baryannis et al. (2019) argued that outcomes from AI solutions
must be interpretable and justified if they ought to be valuable and able to be included in supply chain
resource management related decision-making processes. The urge of this interpretability comes from
three reasons given by Molnar (2020): 1) finding meaning within and gaining the knowledge captured
by ML models; 2) detecting bias in models; and 3) increasing acceptance of produced solutions, which
are directly relevant to supply chain resource management. In Section 2.2.2, a more extensive literature

Causal and Interpretable Predictive Analytics in Operational Decision Making for Emergency
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review on ML Interpretability is given.

2.2 State-of-the-art methods and techniques

2.2.1 Causal machine learning

Due to the exponential growth in heterogeneous data gathering and enormous amount of processing
power, ML systems have been able to improve predictive performance and, for a majority of them,
increased complexity [Jordan and Mitchell, 2015]. Despite these advances, researchers raise concern
about the wide use of these techniques [Pearl, 2019], and not since long ago [Schölkopf, 2022].
According to Peal (2019), there are basically three concerns.

1. One of the drawbacks of traditional ML, is the implicit use of correlation, as correlation does
not imply causation. As a consequence, there is a lack of robustness and invariancy in these
(prediction) ML models. In changing and dynamic situations, the correlations are still taken
as predictors or indicators, while the real cause and effects are not discovered and modelled.
This results in less reliable predictions as the model can create spurious relationships, which
are eventually translated to predictions. For ASML, set in a continually changing and dynamic
environment, this could mean that prediction models take into account features that do not
influence a specific target, resulting in bad predictions.

2. Another barrier is explainability, or the fact that ML models are still largely black-boxes and
unable to justify the assumptions that went into their predictions or recommendations, also
known as ML Interpretability. This undermines end-user confidence and prevents the models
from being diagnosed, repaired, or improved by ML system developers. As a result, systems could
contain discriminatory biases, resulting in unfair decisions made based on gender or race [Caton
and Haas, 2020].

3. The inability to connect causes and effects is the third barrier. To achieve human-level intelligence,
this characteristic of human cognition is a required element of ML systems. This component
should enable these systems to create a compact and modular representation of their surroundings,
question that representation, alter it through imaginative activities, and then be able to correctly
answer "What if?" queries. This would allow, as a user, to give interventional inquiries and help
in improving decision-making on interventions or choosing from a set of actions. Currently, this
is mainly done with correlation based techniques which do not distinguish between cause and
effect.

Causal Inference
The process of determining and measuring the independent, true impact of a specific phenomenon that
is a part of a broader system is known as Causal Inference [Holland, 1986]. One key difference between
causal inference and inference of association (correlation) studies is that causal inference investigates
the response of an effect variable when the cause of that effect variable is altered, while the latter
studies the relationship between variables without considering the underlying causal mechanisms.
Yet, there are some conditions and assumptions that should be met for proper use of Causal Inference
in Causal ML [Pearl, 2009,Pearl, 2019].

• Unconfoundedness: Causal ML algorithms can be used under the assumption that there are
no unobserved confounding factors (variables that directly influence on the target variable). In
contrast, the estimates of the treatment effects in the model may be biased in the presence of
unobserved confounders.

• Exchangeability: Another condition that should be met in order to estimate causal effects is
exchangeability, also known as ignorability. It states that the decision to provide a treatment to
one individual should not affect the likelihood or choice of administering a specific treatment to
another individual.
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• Consistency: The consistency assumption states that the potential outcome under a specific
treatment is equal to the observed outcome if that treatment is actually received.

• Positivity: This condition states that a treatment assignment is not deterministic for every
sample. This implies that there is a chance for either treatment to be applied to every group of
interest.

Literature mainly distinguishes between two frameworks within Causal ML, namely the framework
of structural causal graphs and the potential outcome framework, which is explained in the next
sections.

Structural causal graph
The graphical representation of the causal assumptions (the causal relationships among the variables)
in Causal Inference is called structural causal graphs. Learning and discovering the structure of
such causal graphs from observational data is in literature mainly done with the use of Bayesian
networks [Pourret et al., 2008]. This tool has been proven to be an effective and versatile tool and has
been applied to a variety of research fields. Next to this type of causal discovery, causal graphs can
be drawn with domain experts.

The combination of the structural causal graphical framework and ML prediction models is not
unknown. Brunk et al. (2021) developed more comprehensible predictions for business processes
that consider cause and effect relationships among an event log’s variables. By telling the end-user
the cause and effects within the predictions, the predictions got more comprehensible. Next to that,
they showed that including context variables can increase prediction accuracy. Still, the predictions
themselves were based on correlation and not on causation.

Potential outcome framework
Estimating the potential outcome of an intervention or activity with Causal ML is in literature mainly
done via the Neyman-Rubin outcomes framework [Rubin, 2005]. The base of the framework is N cases
indexed by i. A (process) intervention is considered as a treatment, where Yi(1) denotes a case i’s
outcome when it receives the treatment and Yi(0) denotes a case i’s outcome when it receives no or
the control treatment. The causal effect of receiving a treatment compared to the control treatment
given a case is represented as πi and calculated with the following formula:

πi = Yi(1) − Yi(0) (1)

Within the population N we can distinguish subgroups, where Xi represents this as a vector of
variables. The expected causal effect of the treatment for a subgroup within the population is called
the Conditional Average Treatment Effect (CATE) and can be estimated by:

CATE : π(Xi) = E[Yi(1)|Xi] − E[Yi(0)|Xi] (2)

Conventionally, this CATE cannot be estimated because both Yi(1) and Yi(0) cannot be measured.
With some assumptions, it can still be estimated indirectly. Nevertheless, in this research both Yi(1)
and Yi(0) can be measured. This is explained later in Chapter 5. The CATE for a treated case i,
is sometimes called the uplift as it estimates the effect of treating the case compared to not treating
the case. The modelling of uplifting allows determining which action to take or treatment to apply to
optimize the (business process) outcome.

Gutierrez and Gérardy (2017) distinguished three different uplift model approaches, namely:
two-model (meta-learners), class-transformation, and direct uplifting. The two-model approach basically
builds two predictive models, one exclusively using the treatment group data and the other exclusively
using the control group data. The class-transformation uses a class variable transformation which can
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transform any single (ML) classification model into an uplift model. Direct uplifting is a pure uplifting
approach that allows to directly model the treatment effects.

Most of the innovations with Causal ML that are suggested in literature come from direct marketing,
where uplift modelling is used to improve targeted advertising campaigns in terms of both chosen
target population and campaign design [Devriendt et al., 2018]. Yet, this approach for prescriptive
analytics is getting its attention in BPM initiatives, especially in prescriptive (business) process
monitoring [Bozorgi et al., 2020, Bozorgi et al., 2021, Shoush and Dumas, 2022a, Shoush and Dumas,
2022b]. Bozorgi et al. studied how this potential outcome framework, specifically uplift modelling,
could be used in predictive and prescriptive process monitoring. In their first research, the outcome
was a case-level recommendation system for interventions in a loan application process that maximizes
the return-on-investment [Bozorgi et al., 2020]. The authors used action rule mining on event logs
as a tool to efficiently select only the rules for which there is high revenue and focus only on these
cases. To determine the causal effect of the selected rules, the CATE for each rule was estimated
with the help of an uplift model. The paper proposed a prescriptive monitoring method that uses
a causal meta-learning approach named orthogonal random forests. Bozorgi et al. (2021) continued
this idea of uplift modelling in BPM and showed that this could help reduce process cycle time.
Shoush and Dumas (2022a) extended this idea of triggering interventions at run-time while respecting
resource constraints. Finally, the authors continued this research by considering whether to trigger an
intervention now or later, according to the level of uncertainty in the prediction [Shoush and Dumas,
2022b].

A complementary research field is policy evaluation and optimization [Dudík et al., 2015, Athey
and Wager, 2021]. Policy evaluation is to determine the estimated causal effect of a certain policy
or intervention. Policy optimization seeks to identify the policy that maximizes the expected total
benefits. The goal of uplifting is comparable to learning optimal treatment and policy assignment
rules, but the specific outcomes are different since these methods put more emphasis on the causal
effect estimation loss rather than not or wrongly intervening loss on the total benefits. Accordingly, the
problem can be seen as a causal classification task rather than a causal effect estimation task [Athey
et al., 2017, Athey and Wager, 2021], of which the objective equation can be found in Equation 3.
Although Cheng et al. (2022) asserted that Causal ML and traditional ML have different learning
objectives and, therefore, cannot be compared on the same metrics, the adjustment to a classification
problem would allow comparing Causal ML to traditional ML with traditional ML metrics like
Accuracy.

V (π) =
∑

i

∑
t

πt(Xi)(Y(i,t) − Y(i,0)) (3)

Concluding, estimating CATE for optimal treatment policies has been proven to be beneficial
for predictive and prescriptive (process) analytics for business process outcome optimization. Rather
than formulating such Causal ML problems as a causal effect estimation loss, transforming it into a
classification task can enhance the goal of maximizing optimal treatment or intervention assignment.
Such treatment would in our study be investigating a sourcing solution, while the outcome would be
if this solution is the most effective one or not.

2.2.2 Machine Learning Interpretability

As just explained in the previous section, and earlier addressed in Section 1.6, many ML models
still remain largely black-boxes while interpretability and explainability of these systems ought to
be necessary for value creation in decision-making tasks in supply chain management. Defining the
meaning of the term "Machine Learning Interpretability" is not a trivial task. Several definitions can be
found in literature, but the one that is most used is "the degree to which a human can understand the
cause of a decision" by Miller (2019). Literature also interchangeably uses the term "explainability",

12



as they are closely related. In the work of Molnar (2020), a distinguishment is made between the
terms interpretability/explainability and explanation, where “explanation” is used for explanations of
individual predictions. While the goal of the latter is rather justifying a specific decision, the goal
of the former is more important for scientific understanding or bias detection [Doshi-Velez and Kim,
2017]. For this reason, the term "interpretability" was more in line with our goal in this research. Du
et al. (2019) defined the three main application fields of ML Interpretability as follows:

1. Model Validation
Learned models are often evaluated through the process of performance validation, which is
defined as the process of evaluating a given performance metric on a chosen metric such as
accuracy. However, Ho et al. (2020) argued that it is crucial to collect domain-relevant features
for model inclusion because they point to plausible explanations for the ML model. One should
work toward models that incorporate real causal predictors of the result in order to prevent
overfitting or non-generalizability problems. To make sure that models do not breach ethical
and legal requirements, or rely on irrelevant variables to make decisions, ML Interpretability
may be used to determine whether models have used these biases.

2. Model Debugging
ML Interpretability techniques can enable ML model developers in getting insights into how
the model works as explained above. Some of the techniques can also be used to analyze the
misbehaviour, like mispredictions, and eventually, debug the model. The improvement with
debugging can be done in several ways:

(a) Model assertions
One way to improve and debug ML models is to include model assertions, like constraints,
applied to the outputs given by the ML models. These ML model extensions can be exact,
applied deterministic functions on model outputs, and soft applied probabilistic functions
on the model [Kang et al., 2018]. However, most of the researched methods are applied to
non-tabular data, but to more complex data such as video analytics [Kang et al., 2020],
which makes the literature rather scattered. It can also be used to let the model abstain
from certain predictions. This will be addressed later in Section 2.2.3.

(b) Feature refinement
From a feature perspective, developers could use ML Interpretability for refinement of the
features [Zhang et al., 2019]. One could see if certain mispredictions are made because of
specific feature values. This could help in identifying features that could avoid the model
from mispredicting, or debugging features themselves.

(c) Data debugging
Th outcomes of model validation in combination with ML Interpretability can help identify
data bugs on local model level for a single or a group of predictions [Pradhan et al., 2021].
This would be the subsequent of bias detection.

3. Knowledge discovery
ML is one of the methods to discover those (difficult) relationships that are not or hardly possible
to acquire and statistically test by humans because of for example high dimensionality [Frawley
et al., 1992]. Hence, this field forms a method for knowledge discovery [Frawley et al., 1992].
However, with models increasing in complexity and becoming more often black-boxes, it is hard
to just tell for humans how the total model works. By applying several ML Interpretability
methods, relationships learned by the model can be discovered and used as knowledge [Molnar,
2020].

With a variety of different ML Interpretability techniques, classifying them can be done using
different criteria [Doshi-Velez and Kim, 2017,Carvalho et al., 2019,Molnar, 2020]. We highlighted and
explained the different criteria chosen to be important for our research in the following paragraphs.

13



Scope
The part of the prediction process that each interpretability tool seeks to explain can be categorized
according to its scope. Algorithm Transparency is about how the algorithm creates the model and
what kind of relationships the model can learn. Next to this a priori method, there exist two post
hoc methods. On the one hand, there exist we have global methods that help in understanding how
the complete model works and makes its predictions. This method can give a general and holistic
understanding of the obtained ML model. On the other hand, local interpretability tools are more
related to explainability as they aim to demonstrate how a single prediction was made.

Model Specific vs Model Agnostic
Further, we could distinguish between interpretation tools that could only be applied to a specific ML
model class, e.g. the tools that can only be applied to tree-based ML models. On the other hand,
model-agnostic tools work for any ML model class. These methods are not limited to a specific ML
model class, and can be applied to any trained ML model, without knowing the model internals.

Results
The methods can also be distinguished by the results they produce. To begin with, this result could
be a feature summary, which gives a statistical summary of the features and/or their relationships
to each other and to the target variable. Next, the model internals can be obtained for intrinsically
interpretable ML models. Data points is the third explanation result and explains the model or
prediction by returning data points. Finally, surrogate intrinsically interpretable model are
approximated simpler models that could make a complex model more interpretable.

Techniques
In Appendix A, we categorized all current off-the-shelf ML Interpretability techniques according to
the above defined criteria. Local approaches’ primary objective is justification on individual samples,
whereas global methods are better suited for scientific understanding or bias detection. Next to this, we
were mainly interested in feature summaries to get a better understanding of the total model working.
Accordingly, we chose complementing Feature Importance, Individual Condition Expectation
plots [Goldstein et al., 2015], Permutation Importance [Breiman, 2001], Partial Dependence Plots
[Friedman, 2001], and Shapley Values [Lundberg and Lee, 2017] as ML Interpretability techniques for
our research.

Goals
Interpretability of ML systems or their explanations provided by ML Interpretability methods mainly
has three goals [Rüping et al., 2006]. The first goal, Accuracy, reflects on the extent to the given
explanation provided by the explanation method refers to the actual connection between the prediction
made by the ML model, also known as fidelity. The Understandability of an explanation refers to
how easily it can be comprehended by an observer. This is an important goal because, even if an
explanation is accurate, it will be of no use if it is not understandable. Efficiency refers to the amount
of time it takes for a user to understand an explanation, and reflects on the comprehensibility property.

Error Analysis
For model validation and debugging, there currently exist some tools, such as PaLM [Krishnan and
Wu, 2017] and Manifold [Zhang et al., 2019], which allow analyzing which features or data points
cause mispredictions and biases. Unfortunately, these tools were not available to deploy in Python
or were not possible to use for data security reasons. Nevertheless, their methods can be used in
this error analysis. They mainly use standard visualization techniques such as scatter plots and bar
plots to identify these bugs. Yet, these methods can only take into account a maximum of two or
three features per analysis. By reducing the total dimensionality, while keeping all features, clustering
techniques can also be used to find bugs [Zheng et al., 2006].
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2.2.3 Model Abstention

In the previous chapter, we pointed out that model abstentions can enhance decision-making with
ML prediction models. Such model assertion on the ML system is often also called "a reject option"
[Hendrickx et al., 2021]. By measuring uncertainty in predictions, the opportunity to reject the ML
system to provide a decision which has great uncertainty is enabled.

Uncertainty types
This uncertainty can come from either aleatoric and/or epistemic uncertainty [Hendrickx et al., 2021,
Barandas et al., 2022]. Aleatoric uncertainty is caused by unpredictability present in the data, such
as the variability and randomness as a result of the data-measurement process. On the other hand,
epistemic uncertainty is caused by incorrect modelled relationships because of the lack of knowledge
in the model.

Rejection types
Literature mainly distinguishes between two types of rejections that can be made [Hendrickx et al.,
2021,Kompa et al., 2021,Barandas et al., 2022]: ambiguity and novelty rejection. The former rejection
type reflects on the uncertainty of the model prediction for a specific sample. These types of rejections
are inherently dependent on the chosen ML prediction model. The novelty rejection learns to reject
samples that are too dissimilar to the used sample population for ML model training. These types
of rejections are less dependent on the chosen ML prediction model because the dissimilarity measure
can be done with separate ML models.

Model assertion learning
Learning such model assertion model when to abstain can be done sequentially (first training the ML
prediction model, and then the model assertion) or simultaneously with the ML prediction model
[Hendrickx et al., 2021]. The sequential learning approach allows to extend a previously trained ML
model with this reject option. However, this also leads to sub-optimal rejection behaviour because
of a lack of bi-lateral dependency during training. This disadvantage can be overcome by using
simultaneous learning because the ML prediction model and rejection model assertion are jointly
trained. Nevertheless, this brings the drawback for this method of not being able to reuse pre-trained
ML models.

Learning objectives
Such model assertion mainly has two goals that should be balanced according to Hendrickx et al.
(2021). While the rejection model should improve the ML model’s predictive performance, the
rejections should not lead to a decrease in the sample coverage such that the ML model becomes
useless. Accordingly, metrics should be chosen to quantify and evaluate what is desired and what
is not. According to Hendrickx et al. (2021) and Barandas et al. (2022), the most widely used
method in classification tasks is the Accuracy-Reject Curve (ARC) [Nadeem et al., 2009]. This curve
displays the Accuracy of the non-rejected samples and the sample coverage (number of samples not
rejected vs rejected). However, this evaluation method only reflects on the non-rejected samples, while
one could also be more interested in the classification quality and rejection quality [Condessa et al.,
2017]. Accordingly, the authors defined the evaluation metric "classification quality" as "the correct
decision-making of the classifier–rejector, assessing both the performance of the classifier on the set
of non-rejected samples and the performance of the rejector on the set of misclassified samples". In
addition, the "rejector quality" measures ability to reject misclassified samples. The introduction of
both rejector quality and classification quality allows to correctly and objectively evaluate different
ML models and rejector combinations. Besides Accuracy, other ML evaluation metrics like F-1 score
and Area Under the ROC Curve (AUC) could be used for the same purpose [Hendrickx et al.,
2021,Condessa et al., 2017,Barandas et al., 2022].
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Applications
The previously mentioned reviews and surveys [Hendrickx et al., 2021, Kompa et al., 2021, Barandas
et al., 2022] on the field of ML model abstention predominantly reported applications of this method
in safety-sensitive, medical and economic domains. Nevertheless, [Maggi et al., 2014] studied how a
sequentially learned ambiguity rejector could enhance predictive business process monitoring. Their
work shows how abstaining from a prediction when the class support in the predicted Decision Tree
leaf node is below a threshold can improve prediction performance. Though, Maggi et al. (2014) also
noted that this could possibly decrease the usability if the threshold is set too low, as the number of
cases handled by the recommendation system decreases. As well, Metzger and Föcker (2017) studied
the effect of the ML model its uncertainty measures and costs of (in)correct rejections, on the total
costs saved. They showed that such an abstention model is beneficial in predictive business process
monitoring, albeit the effectiveness of proactive process adaptions and the relative costs of these
process adjustments are key determinants for the net benefit of the system.

2.3 Conclusion

In this chapter, we conducted a more in-depth literature review on the related work in our problem
context, Causal ML, ML Interpretability, and model abstention. With the acquired knowledge, we
were able to decide on the proper methods to answer our research questions.

Firstly, we concluded that problem solving of operational decision-making problems (for orders that
already started) is currently mainly done with simple business rules or based on expert knowledge.
Similarly, this method is currently used in the manual EMO sourcing process. Nevertheless, ML is
pointed out as one of the promising techniques for support in this decision-making with the emergence
of Big Data. Among the current ML methods, Causal ML is underlined to be an important future
research topic for case-based decision-making in operations. Furthermore, the importance of ML
Interpretability of the provided ML solution is punctuated.

Among the available Causal ML innovations, uplift modelling and policy learning and optimization
stood out as promising and suitable methods for our research problem. The latter focuses on optimal
treatment or intervention assignment which in our case reflects on predicting the most effective sourcing
solution. Next to that, the objective function of this method is formulated as a classification problem
that enables comparing traditional ML to Causal ML. We, therefore, chose to use this Causal ML
method to exploit in our research.

Further, we reviewed several applications and methods used for ML Interpretability. We discussed
that global methods are more suitable for scientific understanding or bias detection rather than
justification on individual samples, which is the main goal of local methods. For this reason, we
chose to use global methods for our third sub-research question on how ML Interpretability can be
used for model validation, debugging, and knowledge discovery.

Finally, the reviewed model abstention on several topics ought to be important for designing a
rejection model. To complement our study on ML Interpetability, we chose to study how an ambiguity
rejector could enhance the best obtained ML prediction model. Dependent on choices later the exact
rejector design was specified as of its dependency on the chosen best ML prediction model.
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3 Methodology
At the end of Chapter 1, we formulated our main and sub-research questions. The literature review
conducted in the previous chapter, allowed us to acquire the necessary knowledge to establish the
methodology used to answer the research questions. The section begins by providing an overview of
the theoretical framework that serves as the basis for this study. The sub-research questions are then
situated within this framework, and the methods used to address these questions are detailed.

3.1 Framework

This research aims to gain valuable insights from data through mathematical and analytical models
and applications. More than twenty years after CRISP-DM’s introduction [Wirth and Hipp, 2000] it
is still the de-facto standard and an industry-independent process model for developing data mining
and knowledge discovery projects [Schröer et al., 2021]. The process model is complemented with
convenient task descriptions which can be followed as guidelines. Next to that, the life cycle can be
iterated multiple times which is suitable for continuous projects and exploratory studies. However,
the CRISP-DM framework is still highly generic. For this reason, we used a tailored version of this
framework where the deployment phase was left out and an ML Interpretability phase was embedded.
With this in mind, we used several different (partial) iterations of this framework to answer our
sub-research questions. We indicated the starting phase in the framework for each of the sub-research
questions with an asterisk (*). Next, an elaboration on the data analysis preliminaries is given,
whereafter each sub-research question follows, and closing with a conclusion.

Business 
Understanding

Data 
Understanding

Data 
Preparation

ModelingEvaluation

ML 
Interpretability Data

Figure 4: Research framework based on CRISP-DM [Wirth and Hipp, 2000]

3.2 Data analysis preliminaries

Business 
Understanding*

Data
Understanding

Data 
PreparationData

Figure 5: Data analysis preliminaries framework design

We already started this thesis with the Business Understanding phase and continued this in Chapter
4, where we gained more knowledge about the process in scope. In particular, the main objectives
for this Business understanding were to identify and formulate which solutions should be predicted
and which features to include in our preliminary data set. We did this by interviewing SMEs and
stakeholders.

Causal and Interpretable Predictive Analytics in Operational Decision Making for Emergency
Maintenance Order Fulfillment: a Case Study at ASML
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Subsequently, we started with the Data Understanding phase where we collected the initial data.
We first determined which SOs fit in our problem scope (an EMO that is sourced by a GOC planner).
ASML’s CSCM uses a certain software for data visualization and analytics which retrieves data from
their databases. The first steps of data collection were performed in this software, since pre-made
datasets were online available and could be conveniently integrated, filtered, and transformed. We
explored, described, and assessed the data quality to get a better understanding of the data and
discussed and validated outcomes with SMEs and stakeholders.

In the Data Preparation phase, we started with a feature selection by examining the features on the
inclusion criteria: relevance to the target variable, data quality, uniqueness compared to other features,
and technical constraints such as limits on data volume. Next, we selected the samples to include.
Missing data for which the true values cannot be retrieved can be recovered in several ways [Allison,
2001]. However, when estimating causal effects, this should only be done if the underlying causal
model is sound [Pearl, 2019]. In this phase, we did not know this soundness yet, hence, we removed
the samples with missing values.

3.3 Causal ML

Data 
Preparation*

ModelingEvaluation

Data

Figure 6: Causal ML framework design

While traditional ML needs predictor variables and one or multiple target variables, Causal ML
needs an additional variable that reflects the outcome of a given treatment. This treatment in our
problem reflects on the sourcing solution of a certain EMO. With this outcome variable, the potential
effectiveness of a treatment (solution) on a certain EMO can be estimated. Since we only had data on
which solution had been most effective on an EMO, our outcome variable was sparse, e.g. the same
outcome variable for each historical EMO with the treated solution, and it would become impossible
for the model to learn causal effects. To address this problem, we created and tested the use of a
synthetic control group and synthetically created samples as it would have been an observational study.
As well, we addressed the problem of the high-class imbalance present in our data. We choose to focus
on resampling as a mitigation strategy to attain better input data for the ML models. As explained
in Chapter 2, we decided to use a causal policy learner and optimization method. We selected a
technique based on our problem characteristics, and on the availability and deployability, i.e. the
technique should be available in a package that is possible to use within Python. Next, we chose a
proper test design where we made a trade-off between computational cost and statistical performance.
The performance metrics for model assessment were chosen in collusion with stakeholders to meet the
business objective and deal with the class imbalance. In the evaluation phase, the best Causal ML
model was chosen based on multiple criteria. First of all, the determined performance metrics were
used. Secondly, the confusion matrices were analyzed on models’ bias directions. Finally, the previous
two criteria combined would lead to the model’s usability in practice. A remark should be made on
the fact that the evaluation method (performance metrics and confusion matrices) is not in line with
current literature. As explained in Section 2.2.1 a majority of the Causal ML models focus on causal
effect estimations and therefore try to optimize the accuracy of the CATE. However, policy learning
and optimization algorithms focus on correctly classifying treatments or interventions to a certain
instance. In the context of multi-treatments, such policy optimization would learn which treatment to
give for a certain instance to optimize the total benefit of the instances. In our case, this, thus, would
be which solution will be the most effective one for a certain EMO. Accordingly, this problem becomes
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a causal classification problem. With that having said, we could justify for the dissimilarity to present
Causal ML studies, and use performance metrics used for traditional ML. As a matter of fact, this
also allowed us to compare Causal ML to traditional ML for the second sub-research question.

3.4 Traditional ML

Data 
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Data

Figure 7: Traditional ML framework design

In this sub-research question, we aimed to explore how Causal ML compares to traditional ML when
predicting the most effective solution. Before we selected the traditional modelling technique, we first
did some more data preparation with the learned matters from the previous sub-research question. We
earlier punctuated the importance of the interpretability of our ML model, and accordingly selected a
method that would satisfy this need. Additionally, we created a traditional ML model with Automated
ML (AutoML). The inclusion of this method, allowed to explore the use of this emerging approach
and see if a better model could be developed without pleasing the importance of interpretability. For
the model assessment, a proper test design was generated by trading off the extent of robustness and
computational costs. The performance metrics determined in the previous research question were still
used for the model assessments. In the evaluation phase, the best prediction model was chosen based
on the same criteria as used in the previous research question.

3.5 ML Interpretability
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Figure 8: ML Interpretability framework design

With the obtained best ML prediction model, we used several global ML Interpretability techniques
to analyze how these could be used for the three application fields defined by Du et al. (2019):
Model validation, knowledge discovery, and model debugging. We first started by applying these
techniques and analyzed the importance of each feature and its relationship to the target variable. In
the meanwhile, we aimed to discover potential Model Debug Opportunities (MDO) which would later
be used for model debugging. With the obtained insights from the ML Interpretability techniques, we
validated the model working with SMEs and stakeholders. Further, we tested if the MDOs indeed could
debug the models and enhance the predictive performance of the best ML prediction model. Finally,
we evaluated the utilized methods on the three goals for ML Interpetability defined by Carvalho et
al. (2019).
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3.6 Model Abstention
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Figure 9: Model Abstention framework design

In this final sub-research question, we wanted to explore how model abstentions can be used and
enhance the best ML prediction model obtained. Next to the change in predictive performance, we
were also interested in the financial aspect of this abstention. Firstly, we identified the costs associated
with the different checks performed on the different solutions. This was done in interviews with SMEs
where estimations were made on the time spent on those checks. In the previous chapter, we decided
to use an ambiguity rejector as a model abstention method. Since this method is dependent on the
chosen ML model, the specific uncertainty measures could only be chosen after this choice of the best
ML model. Nevertheless, we first took a step back by analyzing the ML model’s uncertainty. Next,
we used the earlier chosen performance metrics together with the sample coverage rates to analyze the
impacts on these metrics and rates with particular rejection-thresholds. Subsequently, we optimized
the thresholds according to the costs saved by the threshold settings. Finally, a comparison was made
between the current workflow, the best ML prediction model with and without its model assertion, and
the optimal workflow, which was defined as the workflow without redundant checks. The evaluation
metrics regarded time saved by each workflow, the coverage of each workflow, and the earlier chosen
performance metrics.

3.7 Conclusion

Altogether, we provided a tailored version of the CRISP-DM framework where we included ML
Interpretability as a phase and excluded deployment as it does not fit in our research scope. We
used this framework iteratively to answer our research questions.
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4 Data Analysis Preliminaries
In this chapter, the general Data Understanding and Preparation phases relevant to all other chapters
are explained. The outcomes of this chapter form a base for answering the sub-research questions in
the next chapters.

4.1 Business understanding

After we defined our problem scope in Chapter 1, the exact sourcing solutions should be defined.
Recalling, a SO is the request for all the materials needed to execute a specific action, and contains
an item per requested material. One of these items can become an EMO, while the others do not,
as a consequence of earlier mentioned issues like material availabilities. To fulfill such EMO, a GOC
planner currently follows a static workflow designed to decrease overall high labour and activity costs.
The first checks are performed on sourcing solutions that generally do not involve too much work from
other departments, and where the lead time is generally short. When these checks show infeasibility
of these solutions because there is no stock in a specific storage location, the planner performs checks
for other sourcing solutions. These checks are more exceptional and require other teams to check,
approve, and/or enable to source this solution. With a multitude of unique combinations of storage
location types and plants, predicting the exact solution which can be directly implemented becomes
fairly hard due to the low sample size per solution. Consequently, we chose to aggregate them on
higher level on storage location type. Below, the eight sourcing solutions are described.

1. Unrestricted: The material is sourced from a storage location with no restrictions.

2. Semi-restricted: The material is sourced from a storage location with some restrictions.

3. Predecessor or Successor: The requested material has a successor which can be sourced, and
is accepted by the customer.

4. Conversion: The material is sourced from stock on to-be-converted materials.

5. Direct Service Parts (DSP): The material is sourced from incoming supply that do not need
conversion at ASML’s factory.

6. Restricted: The material is sourced from a storage location with severe restrictions.

7. Repair: The material is sourced from a storage location with to-be-repaired materials.

8. Alternative: An alternative material is used for the EMO.

However, for the solutions Predecessor or Successor, and Alternative the initial EMO is
cancelled and a new EMO is created with the predecessor/successor or alternative as material instead
of the original material. Since these EMOs are not directly linked to each other, connecting the
cancelled EMO and new EMO becomes a hard task with a lot of uncertainties. Hence, we decided to
exclude these solutions from our solution set.

4.2 Data understanding and preparation

Next, we start with the general data understanding and preparation of our problem. As we did not
want to put too much emphasize on this phase, we decided to highlight the activities and the outcomes
in this section.

4.2.1 Collect initial data

From the data sources in the data analytics software, the collection started with finding one or multiple
data sets that contained all SOs with their items. Every EMO is part of a SO which has a sales
document number, and a specific item number within that sales document. This combination of sales
document number and sales document item number together is called sales document item key and
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is used as unique identifier to match the data sets. The first big filter used to scope down the data
was filtering on sales order keys which had the priority label ’Emergency’. Next, a pre-made filter
was used to exclude EMOs which were not bucketed as GOC order. Since one of the data sources
for which this data set was dependent on is only stored for one year, the data ranges from August
2021 till August 2022. At the end of this filtering, it resulted in all EMOs in GOC scope with their
unique sales document item key, a material number, the time that the order was created and the time
it entered GOC’s scope.

Unfortunately, the sourcing solution per case was not yet determined. Though, the solution could
be obtained with the use of the storage location where the material at that moment it entered the
GOC scope. If for example the sourced material was located at a storage location to be converted
materials at the time the GOC was sourcing, it was assumed that the GOC requested a conversion
to later ship this material to the customer. Thus, this case could be labelled as sourcing solution
conversion. Unfortunately, we could only directly identify the material’s storage location when it
was ready for shipment which generally are only Unrestricted and sometimes Semi-restricted
storage locations. As a consequence almost all observed storage locations were Unrestricted and
sometimes Semi-restricted. We used a unique equipment number to retrieve all the movements
of this equipment throughout the full supply chain. Hence, this allowed us to see at which storage
location a specific equipment was at a certain time. To determine the storage location that is sourced
from, the time when the EMO was forwarded to the GOC was used. We developed an algorithm in
Python to determine this solution.

On a high level, two contextual data categories can be distinguished: demand and material data.
The former category contains data about the demand aspect of the order, such as the requesting
customer, the maintenance activity type for which the material is needed, etc. Besides the potential
predictor features, our target variable, Solution, is also stored in this category. The latter category
describes data about the material at the moment of sourcing, such as the standard cost price, available
stock, etc. The analysis of this data category may uncover discrepancies in the treatment of certain
materials or identify underlying causes for the infeasibility of a solution due to a deficiency of inventory.

4.2.2 Data description and exploration

After we collected our initial data, we explored the data to uncover and analyze relationships, and
verify the data quality. Next, we performed some necessary data preparation to get the data ready
for the analysis in the next chapters. We summarized the activities performed in Figure 10, and
highlighted the results in the following sections.

Confidential

• Data(set) descriptives

• Correlation matrix

• Categorical features vs 
Solution

• Data quality

• Uniqueness

• Relevance

• Data quality

• Technical constraints

• Repair missing values   

or typos

• Sample removal on 

missing data

• Reducing cardinality by 

grouping and frequency 

• One-hot-encoding for 

categorical features

Format DataSelect SamplesSelect FeaturesData Exploration

Figure 10: Summary data exploration and preparation activities

Data(set) descriptives
The initial data set contained 40, 298 EMOs, one target variable, and 52 contextual features. This
included three Boolean, 12 numerical, and 36 string features. While determining the sourcing solution,
every appearing origin storage location was categorized. In total, 136 different storage locations and
65 different plants were classified as equipment origin.
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4.2.3 Explore data

To analyze the correlations among the features and target variable, we used a correlation matrix. We
observed that most of the features did not correlate more than moderate (i.e. ± 0.49), with a few
exceptions. Next, analyzed the imbalance between the sourcing solutions for which the absolute and
relative size can be found in Table 2. As can be seen, there existed a high class imbalance in view of the
fact that the majority-to-minority class ratios were more than 50:1 [Leevy et al., 2018]. As expected,
Unrestricted turned out to be the solution for a big majority of the cases in our scope. Nevertheless,
after discussing this observation with SMEs and stakeholders, we concluded that the data was not
filtered enough. This possibly resulted in orders which are touched by a GOC planner, but sourced
by the global emergency support automation engine. Hence, a bigger part of the unrestricted solution
cases is probably not sourced by the GOC. Further, we observed for some of the categorical features a
high cardinality, which is addressed in the data preparation phase. For the data quality verification,
we analyzed the descriptives of the numerical features set, the possible values for each categorical
feature, and the missing values for each feature. The results were used in the data cleaning later on.

Size Unrestricted Semi-restricted DSP Conversion Repair Restricted

Absolute size 32879 2524 742 2483 161 989

Relative size 0.82 0.063 0.18 0.062 0.004 0.025

Table 2: Distribution sourcing solutions

4.2.4 Select data

With the results from the previous section, we performed a data selection. Starting with the features,
we defined four criteria on which the inclusion or exclusion decision is made. These criteria were:
relevance to the target variable, data quality, uniqueness compared to other features, and technical
constraints such as limits on data volume. We excluded for each of the criterion one feature. Regarding
the samples, we excluded each EMO that did have missing values for which the true value could not
be imputed. Besides, we removed duplicates caused by the data integration during the data collection
which finally resulted in a population of 35501 samples.

4.2.5 Clean data

A big part of the data cleaning is already done in the previous task by removing features with quality
issues. Nevertheless, we performed some other data cleaning activities. We mainly corrected typos
and imputed missing data for which the true value could easily be retrieved.

4.3 Construct data

Feature construction
In our data collection, we already gathered many pre-constructed variables such as the criticality of
a material in the week of sourcing. Besides, we constructed features ourselves, which can be found in
Table 3.

New feature name Description Value type

Time_to_UND_SO Total hours from SO creation to UND Numerical

GOC_Entry_time_to_und Total hours from GOC entry to UND Numerical

GOC_Entry_weekday Weekday of GOC entry Categorical

Day_period_GOC_Entry Day period GOC entry Categorical

New_introduced New introduced material Boolean

Table 3: Constructed features
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Encoding
Encoding features is for some ML models required as they cannot take any non-numeric values like
text as input, but encoding can also help to reduce computational time and make better predictions.
We used one-hot-encoding for this purpose. Furthermore, some of the categorical features with high
cardinality, like Activity_type, can take up to 41 different values. After one-hot-encoding, this would
result in a total of 41 columns for only this feature. This would increase the computational time, but
also the amount of data needed for the model to identify patterns and thus for the model to generalize
well outside of the training data, increases exponentially. For this reason, we used three different
cardinality reduction methods: grouping on a higher level, focusing on high frequency values, or both
combined. Altogether, this resulted in a decrease from 593 to 140 features.

4.4 Conclusion

In this chapter, we first described which sourcing solutions were included in our problem scope. Next,
we used several methods to explore and describe the data. During data exploration, we observed
a few features that had a correlation of more than 0.49. Later in this research, we address this
multicollinearity and analyze its impact. Further, the expected class imbalance became visible where
we could label it as a high class imbalance. Additionally, we noticed that a lot of the samples for the
majority class contain samples that are not sourced but only touched by GOC planners. Unfortunately,
we were not able to filter wrongly included samples out, and had a different sample representation
than the defined scope. Also, features with big data quality issues are mainly removed, and typos were
recovered. Some features were excluded according to the features’ uniqueness, relevance, data quality,
or technical constraints. A new feature was engineered which serves as information on material being
newly introduced. Finally, data cardinality was reduced, and one-hot encoding was performed for
categorical variables to get the data in the right format. The final feature set existed of 39 predictors
and 1 target variable, which can be found in Appendix B. The next chapters will highlight additional
pre-processing steps taken which are needed for the specific ML methods.
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5 Causal Machine Learning
After we performed general data pre-processing tasks in the previous chapter, we first dive into some
data pre-processing tasks for Causal ML specific in Section 5.1. Subsequently, the modelling phase
is discussed in Section 5.2. Next, the results and findings are discussed in Section 5.3. This chapter
closes with a conclusion in Section 5.4.

5.1 Data preparation

As explained in Section 3.3, we need synthetic control samples with which the model is able to choose
the most effective solution for a specific EMO. In literature, this problem is solved with so called
"Difference-in-differences methods", and in particular often with "synthetic control methods" [Athey
and Imbens, 2017]. Their applications are on problems where some groups, such as cities or states,
receive a treatment such as a change in policy but not others. These methods then create synthetic
samples with statistical models, as the true causal effect of a certain synthetic sample cannot be known.
However, in our case, the Sourcing_solution assigned to an EMO is by definition the most effective
one. With this in mind, we created three methods to deal with this problem and create synthetic
control samples, which are explained below.

• Method 1 (M1)
In general, it can be assumed that not giving any treatment would never be the most effective
one. Accordingly, all EMOs could be copied and given the solution ’None’. The outcome of
samples with a treatment is 1, since it was the most effective one, and for the samples without
any treatment this value is 0 since it was not the most effective one. This would, thus, serve as a
synthetic control group. We assume that the model would never choose treatment ’None’ since
it never gives a higher treatment effect than any other solution. Before resampling, this already
doubled the sample size.

• Method 2 (M2)
Since we knew that each sample’s solution is the most effective, we could also assume that all
other solutions are not. By copying each EMO five times, assigning it a different solution per
copy with the outcome 0, we tried to give the model this contrast. This made the data set six
times bigger before oversampling.

• Method 3 (M3)
This method was based on Method 2. However, instead of following a binary outcome variable,
we could also use different values that reflect on the pain or gain when a treatment is chosen
that is or is not the most effective one. The pains and gains were rough estimations on the
relative time spent on a solution that is not most effective. For example, when the solution
Unrestricted was the most effective one, but a repair was chosen, the outcome value was -3.
This made the sample size six times bigger as well.

Class imbalance
As shown in Section 4.2.2, the data was highly imbalanced on the target variable. However, the
distribution of the sample was altered by the synthetic control sampling process. The total samples,
samples per solution, and per outcome can be found in Appendix C.1. After the different synthetic
control groups were created, this imbalance disappeared for methods 2 and 3. Hence, only method 1
was tested with different resample techniques. Mainly, there exist three methods which can be used for
resampling on the target variable: undersampling, oversampling, and combined methods [Japkowicz
and Stephen, 2002]. For the reason of computational costs, only undersampling and a combined
method were tested. As undersampling technique, Clustered Centroids [Lin et al., 2017] was used
as it generally outperforms random undersampling and allowed to control the number of removed
samples, which is not the case for some techniques like Edited Nearest Neighbour. This control was
required to avoid the combined method to inflate the population size too much. In theory, the sample
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set could become almost six times bigger, which would result in high computational costs. Clustered
Centroids undersamples the majority class by replacing a cluster of majority samples, calculated with
a KMeans algorithm. The majority class Unrestricted was undersampled to 5000 samples, which
is about 1/3rd of the original class size. The combined method first undersamples the majority
class with the used undersampling technique, and afterwards oversamples with Synthetic Minority
Oversampling Technique (SMOTE) [Chawla et al., 2002]. This oversampling technique generates new
samples by calculating the distances for the minority samples near the decision boundary. In this way,
no information was lost, and the models could be better trained. It should be noted that this is done
before the previous step where synthetic control samples are made. If this would be done afterwards,
resampling methods would keep different samples for each group. The different Causal ML model
setups can be found in Table 4.

Model Synthetic control sampling Data (resampling strategy)

M1-O M1 Original

M1-U M1 Undersampled

M1-C M1 Combination

M2 M2 Original

M3 M3 Original

Table 4: Different Causal ML model setups based on the synthetic control sampling and the
resample strategy

5.2 Modeling

5.2.1 Select modeling technique

In the previous section, we addressed the problem of our missing control group and created three
different methods based on the current research problem. To anticipate on potential deficiencies of
our methods, we used a Doubly Robust policy evaluation and optimization technique as Causal ML
method. This method compensates either a bad model of outcome variables with a good model of
past treatments, or the opposite, a bad model of past treatments with a good model of outcome
variables [Dudík et al., 2015]. This method first fits a causal effect estimator by using the doubly
robust causal effect estimation technique [Funk et al., 2011]. Next, it constructs a multitude of
Decision Trees that optimizes the objective function given earlier given in Equation 3, which reflects
on the total gain of all training samples V (π). As explained before, this optimization problem can
be seen as a classification problem where a treatment only was assigned to a sample if it has the
highest estimated causal effect. The optimal policy for a certain EMO is then retrieved from the
Random Forest. With regard to our problem, this means that the effectiveness of all solutions for a
certain EMO were causally estimated, whereafter the solution, which was estimated to be the most
effective, would be assigned to this EMO. In particular, we used the Doubly Robust Random Forest
Policy Learner (DRRFPL) from Microsoft’s python package EconML [Syrgkanis et al., 2021]. Also,
this package provides the opportunity to extend the analysis with ML Interpretability tools such as
SHAP values.

5.2.2 Generate test design

In this section, we elaborate on the chosen evaluation metrics and the test design generated. The
current EMO sourcing process is designed in such a way that the solutions which have a higher chance
of feasibility and lower costs are investigated first, and other solutions with a lower chance of feasibility
and higher costs are investigated later. Since the exact costs are not known yet and were investigated
later in Chapter 8, we could only say, that wrongly predicting and executing a more expensive solution
is more costly and missing out on solutions with low costs is not preferable. Accordingly, the lower
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the costs of the solution, the more important the Recall (completeness) becomes, and the higher the
costs of the solution, the more important the Precision (exactness) becomes. Below in Figure 11, this
is visualized. Next to that, it is important to analyze the confusion matrices of each tested model in
the evaluation phase to see the model’s behaviour in terms of mispredictions. This could for example
reveal any biases in the model or data, or variance between the validation and test set.
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Figure 11: Evaluation metric visualization

After the data was prepared, the model and performance metrics were chosen, and a
train-validation-test split method was used. The implementation of this method serves to mitigate
the risk of overfitting in the final model, as well as to provide a more robust evaluation of the models
compared to using train-test splits alone. Complementary, it allowed finding the best hyper-parameters
of the models with the training and validation data, while an unseen test set is available for an
objective final evaluation of their performance. The data was split with 75% of the data for training
and validation, and 25% for testing, to trade-off low sample size solutions and allowing the models to
have a decent training. Within the by EconML provided DRRFPL, stratified K-fold Cross Validation
(CV) method is built in the algorithm and is required to deploy. However, the algorithm uses this CV
for fitting the causal effect estimators. Even though CV for the Random Forests’ hyper-parameter
optimization would be a more robust method, this double CV would increase the computational time
significantly. Therefore, the training-validation split method is the hold out method. This is again
done with a 75%-25% split for training data and validation data respectively.

Since we were using resampling, we should apply this carefully on the right data. Resampling,
and especially oversampling or combined techniques, should not be performed on the validation or
test set, as the results will generally be too optimistic [Vandewiele et al., 2021]. Unfortunately, the
CV function built in the DRRFPL forces us to train and validate the regressors with resampled data.
Nevertheless, the hold out validation and test set were not resampled. A visualization of the test
design process is given below in Figure 12.
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5.2.3 Build model

In this section, the model building phase is described where we tried to find the optimal hyper-parameter
configuration. The chosen DRRFPL actually contained three ML models: the two regressors used for
the doubly robust causal effect estimations, and the RFC for the objective function. Concerning
the two inner regressors, we decided to not tune these hyper-parameters as this would require an
additional analysis with a significant increase in computational time as well. For the RFC, it is
known that they perform well with default hyper-parameter settings [Fernández-Delgado et al., 2014].
However, the hyper-parameters which can be directly visible in the Decision Trees such as maximal
depth (max_depth) and minimal sample split (min_samples_split) strongly influence the performance
[Probst et al., 2019]. The number of Decision Trees within the forest can be optimized in order to
improve performance. However, increasing this hyper-parameter beyond 100 can significantly increase
the computational time for the causal models, while the performance gain decreases [Probst et al.,
2019]. Therefore, we chose to tune the maximal depth of the trees and minimal sample split, with the
possible values {2, 8, 16, 32} and {10, 20, 30, 40, 50, 60} respectively and keep the default values for the
other hyper-parameters.

The hold out validation set was used for the evaluation of the best hyper-parameter configuration,
for which the result can be found in Table 5. We compared the confusion matrices and performance
metrics of the trained models on the training and test data to try to trade of between variance and bias.
However, we observed that both variance and bias were rather consistent between the training and
validation data and the models could not really overfit during training. A possible explanation could
be, that this is more dependent on the internal causal effect estimators. Remarkably, the training
time of M1 was significantly higher than M2 and M3, despite the M1 models had less samples. This
could be due to the addition of the control group which serves as an extra class in this multi-class
classification problem.

Model Max_depth Min_samples_split

M1-O 30 8

M1-U 50 8

M1-C 40 8

M2 40 8

M3 50 8

Table 5: Optimal hyper-parameter configurations Causal ML

5.2.4 Assess model

General performance
The results on the test set can be found below in Table 6. In general, none of the models performed
fairly well on all metrics, nor on two of them. Next to this, some of the solutions scored really well
on the one performance metric but not on the other, which makes the results look rather scattered.
When comparing M1 with M2 and M3, it becomes clear that M1 had a higher Recall on average but
lower Precision. When comparing the performance per different solutions, it becomes clear that the
solution Unrestricted was best classified by the models as it on average has the highest performance
in both Precision and Recall. This solution is followed at distance by Conversion, Semi-restricted,
DSP, Repair, and Restricted respectively. In general, we could argue that M2 is performing best
regarding the importance of Precision, but has an extremely low Recall. Within M1, M1-U and M1-C
have about the same results compared to M1-O, as the Precision is higher for the latter and the
Recall is higher for the former. This makes sense as the M1-O had more chance to overfit towards
the majority sample class because of the imbalance, but had less chance to do so after resampling.
Remarkably, M3-O did not predict any test samples on the classes Restricted and Repair. A deeper
dive is taken into the bias of all models in the next chapter.
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Unrestricted Semi restricted Conversion DSP Restricted Repair Unrestricted Semi restricted Conversion DSP Restricted Repair

O 0.94 0.23 0.54 0.36 0.21 0.38 0.90 0.40 0.56 0.45 0.24 0.23

U 0.64 0.67 0.68 0.57 0.28 0.26 0.94 0.17 0.32 0.25 0.17 0.22

C 0.60 0.67 0.72 0.49 0.35 0.41 0.95 0.16 0.34 0.27 0.13 0.09

M2 O 1.00 0.03 0.27 0.11 0.03 0.06 0.86 1.00 0.91 0.70 0.86 1.00

M3 O 1.00 0.02 0.12 0.04 0.00 0.00 0.86 1.00 0.94 0.63 0.00 0.00

Recall Precision

M1

Table 6: The results of the different DRRFPL model configurations on the test set.
Note: colour coding indicates how well the models scored on the performance metric for a given sourcing
solution. The utmost colours green and red indicate the model performed relatively well and worse
respectively on this metric for a given sourcing solution, but do not reflect on overall performance.

Bias
The confusion matrices were used for the bias analysis and can be found in Appendix C.2. In general,
all models had the same bias, as for almost all other solutions than Unrestricted, the majority
of the false negatives were predicted as Unrestricted. However, this bias was strongest for M2
and M3. Accordingly, we observed that the Precision is high for M2 for all other solutions than
Unrestricted, but at the same time a lower Recall of this solution. For M3, the same behaviour
was visible for Semi-restricted, Conversion, and DSP. For the M1 models, there also existed a bias
from Restricted as true solution to Semi-restricted and the other way around, which makes sense
by looking at purposes in practice. Altogether, this suggests that the synthetic control samples for
M2 and M3 gave a better contrast among the different solutions other than Unrestricted, with a
high Precision as result. However, at the same time, these methods decreased the contrast between
Unrestricted and the other solutions.

Best model selection
As previously stated, all configurations had similarities and differences in terms of behaviour and
performance. M2 outperformed M1 and M3 on Precision for almost all solutions, but its Recall was
extremely low for all other solutions than Unrestricted. While the Precision is important for these
solutions, the models hardly cover any of these solutions. In practice, this means that the model could
not support planners on these solutions, which degrades the model’s usability. Comparing M1-O,
M1-U, and M1-C, the first one had better scores respecting the importance of each performance
metric per solution. Therefore, M1-O was chosen as the best performing model. In the next research
question, the model is compared to traditional ML. Yet, the results are discussed more thoroughly in
the next sections.

5.3 Evaluation and discussion

Bias
The bias discovered in the previous section resulted in a worse Recall for all other solutions than
Unrestricted. This is not necessarily the worst bias, as this bias is towards the cheapest solution.
This bias would cause planners to often investigate this solution first which does not take a long time
to find out it is infeasible. Hence, it can be called a "preferential bias" [Rendell, 1986]. In Chapter
8, the impact of this bias in terms of costs is analyzed. Until then, we tried to obtain a better
predictive performance. There are numerous different kinds of biases in ML, which can come from
different sources. On a high level, Mehrabi et al. (2021) distinguished three possible bias sources:
data to algorithm, algorithm to user, and user to data. In our case, user to data could not
be the source of a bias according to the bias causes explained in previously mentioned work. Next,
the possible causes for the biases in our models are explained.
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• Data to algorithm

– Measurement Bias is a result of the way features are measured or chosen. Our contextual
data came from a weekly report and included for example Stock at the moment the report
is created. This made the contextual factors less accurate and reliable for EMOs which
are dependent on a report which is created 6 days ago. To overcome this problem, more
accurate reports should be used such as on daily or hourly bases. Next to that, in Section
4.2.1, it was explained how the target variable outcome was determined for each EMO.
Currently, the algorithm used to determine the solution takes the time that the EMO
entered the GOC scope. It could be that, for a range of EMOs, this time was not the time
it was sourced but only sent to the GOC. This could have introduced some noise in the
data, which resulted in a bias.

– Omitted Variable Bias arises when not all important variables are included as feature.
This could explain the bias, as one of the important variables, namely the estimated time
or arrival of a solution, is not modelled. This is in practice an important factor as the
material should be as fast as possible at the customer. This variable could be modelled,
but then it would need a separate predictive model to estimate this variable. Next to this,
(less aggregated) features on stock levels should be included.

– Representation Bias can be introduced when non-representative samples are included,
or representative samples are not. As explained in Section 4.2.1, our data also included
EMOs which were not sourced but only touched by the GOC. Unfortunately, there was
no better filtering possible or available that could filter out EMOs that brought the noise.
Nevertheless, this would be a next step to diminish the current bias.

• Algorithm to user

– Algorithmic Bias occurs when the input data itself is not biased but is a result of
how the algorithm is designed. This bias could have been introduced by the possible
hyper-parameter settings such as split criterion, which currently is prone to class imbalance
for some models. Due to computational costs, the hyper-parameter grid which was optimized
only contained 2 hyper-parameters. A grid with more hyper-parameters could possibly
result in a model with less bias. Though, in Section 5.2.3, we observed that the model could
not really overfit and that the bias-variance trade-off is more important for the inner causal
estimator regressors, which makes the likelihood of the grid extension’s success smaller.

– Evaluation Bias can arise from the model evaluation method. Currently, the hold out
method for training and validation was used, which is not the most robust method. In the
next section, a more robust method is chosen.

Respecting the current (time) scope of this research, and as for the availability and feasibility of the
solutions for mitigating the data to algorithm bias source, we decided to only tackle the algorithm
to user bias source in the next chapter. Nevertheless, as mentioned, we advise ASML to investigate
the data to algorithm before bringing the final ML model to practice.

Effect Synthetic Control Group methods
As we have discussed previously, we found quite some differences in terms of model behaviour between
each synthetic control group method. In M1, samples were synthetically created to create a control
group. In M2 and M3, samples were synthetically created to pretend it was an observational study.
The difference in bias between M1 compared to M2 and M3 could probably be explained by the fact
that M2 and M3 have more contrast as a result of the synthetic control samples which reflect on each
solution. The difference in terms of Recall between M2 and M3 probably can be explained by the
fact that wrongly treating with a cheap solution gives less loss than if an expensive solution would
be chosen. The model probably could not clearly distinguish between the solutions, and therefore
prefers to choose a cheaper solution. Next to the performance, we observed that the computational
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time model training was higher for M1 than M2 and M3. This actually makes sense as both the inner
regressors and the RFC have one more class to utilize.

Resampling
When comparing the performance and behaviour among the M1 models, it could be seen that M1-O
had a lower Recall than M1-U and M1-C, but not on the Unrestricted solution, which was much
higher for M1-O. For both resampled samples, we first undersampled the majority class, Unrestricted.
On the one hand, this could have resulted in information loss for the solution Unrestricted, but on
the other hand, may have removed noise resulting in the bias towards Unrestricted. This could be
tackled by less aggressively undersampling Unrestricted. Between M1-U and M1-C, there was no
overall significant difference.

Correspondingly, we could argue that the resampling did not improve predictive performance
because of mainly two reasons. First of all, we earlier argued that resampling should only be performed
on training data to avoid over-optimistic results. While the Random Forest was built in this way, the
inner causal effect estimators were fitted on fully resampled data. Secondly, the chosen undersampling
method removed more than 70 per cent of the samples in the majority class. This could have resulted
in too much information loss.

As explained earlier, the inclusion of the new outcome variable has resulted in a different kind of
imbalance in the data set, see Appendix C.1. In traditional ML, different strategies exist and have
been studied, such as resampling or cost sensitive learning [Haixiang et al., 2017]. While for this new
outcome variable, no extensive research is performed on the effect of its imbalance [Devriendt et al.,
2018]. In our case, the M1 models did not have any outcome imbalance, which could be the reason
that they outperformed the other M2 and M3, which contained an outcome imbalance. The work
of [Radcliffe and Surry, 2012] showed that producing resampling in combination with bagging is a
promising solution. Firstly, a multitude of differently resampled sample populations are produced,
models are built on the different samples, and bagging is used to average on the predictions. This
could have been done in our case as well, but then with the majority voting for example.

Causal Inference
As explained in Chapter 2.2, the use of Causal ML comes with some assumptions and conditions. In
order to see if we violated any of these, we examined each assumption on its compliance Regarding
unconfoundedness and consistency, this could have been violated as explained in the omitted variable
bias. The exchangeability condition was probably not violated, because by looking at the number of
cases, time and number of different materials, there was a really low chance that this condition is not
met (e.g., EMO 1 took 1 stock from repair, and as a result EMO 2 could not). Finally, the positivity
condition could have been violated. Our feature Stock represents the stock on Unrestricted and
Semi-restricted storage locations, and if this feature’s value was zero, the solutions Unrestricted
and Semi-restricted could in fact never be the most effective solution.

In line with the above, Pearl (2019) argued that all variables should be graphically modelled such
that assumptions about these causal effects can be tested and made. Further research should thus
identify more potential confounding variables, represent them graphically, and test them to make
certain causal assumptions. Another possibility to overcome the unconfoundedness violation is by
using techniques that need an auxiliary variable (often called an instrumental variable). Even though
it is a common way of dealing with non-observed confounders, it needs true causal knowledge for the
modelling of such variable [Guo et al., 2020]. Besides, there are currently no policy learners available
which include such auxiliary variables.

Be that as it may, Fernández-Loría and Provost (2022) rightly stresses that causal decision-making
is not the same as causal effect estimation. In particular, previously mentioned work argued that the
causal effect estimations do not necessarily have to be accurate to have a good causal decision-making
model, as the objective function in the policy learner is most important. In our case, the objective
function did not directly reflect our performance metrics, which could have (partially) caused the bias
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towards the majority class. In the same way as for the accuracy of the causal effect estimators, the
violation of the unconfoundedness is not bad at all for causal decision-making and, in some cases, can
even enhance it [Fernández-Loría and Provost, 2022]. Nevertheless, causal effect estimators should be
accurate enough to be useful for causal decision-making. Further research should first analyze how
accurate these causal estimators actually are.

As a final point, we observed that the RFC could not really overfit, which suggested that the
inner regressors for causal effect estimation would be more important for the bias-variance trade-off.
Further research should analyze the dependency with regard to this trade-off.

Interpretability
As explained in Section 2.2.1, Causal ML should allow for better explainability and causal discovery.
In Section 5.2.1, we explained that the used Causal ML package could be extended with ML
Interpretability techniques such as the model-agnostic technique SHAP, or the model-specific feature
importance technique for Random Forests. Unfortunately, the SHAP extension was not yet supported
for this specific Causal ML model. Besides, since a policy learner needs different inputs and
generates different outputs compared to traditional ML, other model-agnostic techniques could not be
conveniently applied. What is more, the observed poor model performances on the test set indicate
that the learned relationships do not account for the real nature of the problem. As a result, generated
explanations with any interpretability method for the sake of (causal) knowledge extraction would be
untrustworthy [Zhao and Hastie, 2021]. This reflects on the Accuracy goal of Interpretability, where
the explanation Accuracy of any ML Interpretability method with a ML model with a low predictive
accuracy would be low as well [Ribeiro et al., 2016, Molnar, 2020,Carvalho et al., 2019]. Using these
techniques with the current model performance would thus only be useful for debugging the model.

5.4 Conclusion

This chapter aimed to explore how Causal ML can be used to predict the most effective sourcing
solution. We addressed the problem of the sparse outcome variable by creating and testing different
synthetic controls. Even though creating synthetic controls as of it would have been an observational
study showed to give more contrast to the DRRFPL among the minority solutions, it resulted in a
bigger bias towards the majority solution Unrestricted. Hence, M1, which created a synthetic control
group, showed results that were more in line with our performance metrics. However, the observed
bias for all models was a preferential bias as it was towards the cheapest sourcing solution. In practice,
this means that if a planner would investigate an infeasible solution, it would take the least time of
all solutions to discover this infeasibility.

Moreover, we discussed several potential sources for the present bias, and concluded that the
Algorithm to user bias source would be the only source to be tackled in this research respecting
the current research (time) scope. Yet, before the final ML model would be applied in practice, the
Data to algorithm bias should be investigated as well in order to diminish the bias and improve the
predictive performance.

Next to this, we tested an undersampled and combined resampling technique. The results suggest
that a lot of noise was removed, but also too much information was lost, which could be tackled by
less aggressively undersampling. With regard to the performance metrics, the non-resampled training
data with the synthetic control group (M1-O) was found best performing and was used in the next
chapter.

Further, we discussed how the Causal Inference assumptions and conditions were partly violated,
which could have negatively affected the overall performance of the models. While previous research
argued that unobserved confounders are not necessarily bad for causal decision-making, we argue that
further research should investigate if the causal estimators are accurate enough to be used.
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In line with the above, we did not focus on the training of the inner regressors which estimate
the causal effects used for policy optimization and causal decision-making. In contrast to the
proposition from earlier research that causal effect estimators do not have to be very accurate for causal
decision-making, we argue that further research should study the dependency in the bias-variance
trade-off between the causal effect estimators and the policy optimizer. What is more, the objective of
the DRRFPL function was not in line with our performance metrics, which is another possible cause
for the poor performance.

Lastly, we discussed that despite the explainability benefit of using Causal ML, the current best
ML model could not be used for causal discovery for this purpose as per its predictive performance.
Moreover, the poor performance of this predictive model would presumably not be successful in
supporting GOC planners in their decision-making because of the many mispredictions. Yet, the
M1-O method is used in the next chapter, to compare this method to traditional ML methods.
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6 Traditional Machine Learning
In the previous chapter, we explored how Causal ML can be used to predict the most effective
solution. We ended up with a final Causal ML model that we wish to compare against traditional ML.
Specifically, this best model is compared to two traditional ML models. As explained in Section 3.4,
we included AutoML in our analysis to see if this could outperform the self-developed traditional ML
model. In this chapter, we first use the modelling phase to discuss the used traditional ML models, and
compare the results in Section 6.1. Thereafter, a deeper discussion on and evaluation of the models is
conducted in Section 6.2. Finally, we concluded this chapter on the findings in Section 6.3.

In the previous chapter, we concluded that reducing the number of samples in the majority class
to 5000 likely resulted in a loss of information for that class. In this chapter, the undersampling
technique Edited Nearest Neighbour was used without controlling the number of samples removed to
prevent this loss of information. Nevertheless, all data pre-processing steps were the same for these
methods, with a small exception for AutoML, as is explained in the next section. Accordingly, we
start this research question in the modelling phase from our research framework.

6.1 Modeling

6.1.1 Select modeling technique

In Chapter 2, we stressed the importance and need of our ML model to be interpretable, hence, it
was chosen to compare Causal ML with a tree-based traditional ML technique. Traditional tree-based
ML methods are inherently interpretable but can become black-box if their complexity increases.
Though, they allow for better interpretation than black-box methods like Deep Neural Networks.
For this purpose, it was chosen to use a Random Forest Classifier (RFC) [Breiman, 2001]. This
state-of-the-art ensemble learning method for classification is commonly used because of its predictive
performance and interpretability. An RFC creates a pre-set multitude of classifying Decision Trees
and selects the class which is predicted most by the trees. We used scikit-learn for the deployment of
the RFC in python [Pedregosa et al., 2011].

A second traditional ML model was built with Automated ML (AutoML). This method enables
automation of the process of ML tasks. Some Auto ML modules already automate several pre-processing
steps like feature selection and engineering, whereas most of them only stick to automation of finding
the best model and its optimal hyper-parameters on a certain ML problem [Hutter et al., 2019].
The exploration of this method has mainly two advantages that leverage ASML CSCM department’s
ambition to realize its dream-state and our research. One potential benefit is that it can save time
and resources by automating a process that would otherwise require significant manual effort. This
can be especially useful for ASML when it would like to increase the number of ML applications
but would be constrained by limited staffing or expertise in ML. Additionally, AutoML can help to
improve the performance and accuracy of ML models by automatically searching for and selecting the
best algorithms and hyper-parameters for a given task. This could help ASML, and this research, to
more effectively leverage the potential of ML to solve complex problems and drive business value. In
particular, the inclusion of this method enabled us to see if any black-box or other white box method
would outperform Causal ML and the traditional ML method RFC, while not requiring the model to be
interpretable. We used Azure as a deployment platform for AutoML to train and test this traditional
ML method. The available functionalities mainly cover feature regularization of the data, model
selection, and hyper-parameter tuning. The models covered are several simpler classifiers like Support
Vector Machine up to more sophisticated classifiers like XGBoosting. An overview of the searched
models can be found in Appendix D.1. The optimal model selection and hyper-parameter tuning can
be done with a chosen test design and performance metric. Azure also provides the possibility to test
the models with different featurization techniques. Accordingly, the data is, before entering the model,
automatically transformed to numbers, scaled and normalized to enhance the predictive performance
of certain algorithms that are sensitive to differently scaled features.
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6.1.2 Generate test design

The main difference with the test design of the previous research question, is the use of stratified
k-fold CV for hyper-parameter tuning instead of a holdout method. This could be done now since
computational costs were less problematic because of the low sample size of the causal method.
Moreover, this method generally results in less biased or less optimistic estimates [Arlot and Celisse,
2010]. A K value of 5 was chosen as a trade-off between computational time and variance from the
minority classes as a result of the lower sample sizes [Arlot and Celisse, 2010]. The folds were built
with stratification on the target variable Sourcing_solution.

As explained in 5.2.2, resampling validation and/or test data gives overoptimistic results. Therefore,
only the training data is resampled for the traditional ML method RFC. However, no resampling
method is tested for AutoML as the Azure platform does not provide the option for resampling the
training data only. Below, the to be tested model set-ups and their names can be found in Table 7.

Model ML type Data (resampling strategy)

RFC-O Traditional Original

RFC-U Traditional Undersampled

RFC-C Traditional Combination

DRRFPL Causal Original

AutoML Traditional Original

Table 7: The to be tested model set ups

6.1.3 Build model

For both DRRFPL and RFC, an overview of the searched hyper-parameters values is given in Table
8. Compared to the previous chapter, we included the hyper-parameter Max_features which is the
number of features considered searching for the best split. Lower values lead to more diverse and less
correlated trees. Consequently, it exploits features with moderate effect on the target variable and
obtains better stability when aggregating [Probst et al., 2019]. AutoML trains, validates, and tests over
an extremely big grid per tested model, but limits the choice of performance metrics. In Appendix
D.1, the possible performance metrics can be found. AUC weighted was chosen as a performance
metric for this method as it calculates the contribution of every target class based on the relative
sample size per class, hence is more robust against imbalance [Azure, 2022]. A limitation of AutoML,
and this hyper-parameter optimization method and metric is that we cannot observe the results of
each fold and choose the model ourselves.

Hyper-parameter Values

Max_depth {25, 30, 35, 40, 45}

Min_samples_split {2, 8, 16}

Max_features {
√

n_features, n_features}

Table 8: Grid search for optimal hyper-parameters

In the previous chapter, we observed a strong bias towards the Majority class Unrestricted on
both the hold out validation set and test set. The use of K-fold CV allowed to better analyze the
variance and bias of the algorithms throughout the different folds. For the Causal and traditional ML,
the performance metrics and confusion matrices of the training and validation data were analyzed
during the CV. Regarding the variance, it was observed that the performance for the solutions
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Unrestricted and Conversion were quite consistent, but the performance of the other solutions
generally deviated a lot. This could be the result of two factors according to Raschka (2018):

1. The models tend to overfit on the training data. The CV results showed that the variance
in performance increased with an increase in model complexity (high Max_depth and low
Min_samples_split). Regarding the bias, we observed that the bias directions did not deviate
significantly, but the biases became stronger with a decrease in model complexity. Conventionally,
one should balance underfitting and overfitting as a bias-variance trade-off to select the best
model [Hastie et al., 2009]. However, this should be considered with care [Belkin et al., 2019].
Rich models that could be considered as overfitted but evidently perform better on the validation
set than underfitted models, could in fact be a better model in practice. In our case, we observed
substantially higher results for more complex models.

2. The small sample sizes for the minority classes amplify the relative randomness in our training
data. Among the folds, we observed a high variance for the performance per class. Particularly,
for the minority classes with a low sample size, like Repair, the Precision could deviate between
0 and 1. This evidently suggests that this variance (partially) comes from randomness in our
training data together with the low sample sizes for some minority solutions.

The performance metrics for each fold for each configuration were averaged to find the final score
on these metrics per solution. As we discussed above, we should trade-off the complexity of the
models as a balance between overfitting and underfitting, but also consider the substantial difference
in performance if overfitted. After analyzing the averaged CV performance scores per configuration,
we chose the configurations given in Table 9.

Hyper-parameter RFC-O RFC-U RFC-C DRRFPL

Max_depth 30 30 30 40

Min_samples_split 2 2 2 8

Max_features sqrt sqrt sqrt 140

Table 9: Optimal hyper-parameter configurations

Concerning AutoML, Azure found its best model and hyper-parameters in a reasonable amount of
time, compared to Causal ML, of 1 hour and 22 minutes. The best and worse model scored 0.89885
and 0.5 respectively on the performance metric AUC weighted. The best model chosen by AutoML is
a voting ensemble which is an ensemble classifier learning model that combines the predictions from
multiple other ML models, for which the predictions are summed and the class with the majority vote
is used as prediction.

6.1.4 Assess model

After the hyper-parameters were tuned with and the best configurations were chosen, the models’
performances on the test set could be analyzed. The results can be found in Table 10.
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Unrestricted Semi restricted Conversion DSP Restricted Repair Unrestricted Semi restricted Conversion DSP Restricted Repair

O 0.99 0.20 0.58 0.36 0.10 0.12 0.89 0.74 0.86 0.65 0.65 0.80

U 0.96 0.37 0.67 0.46 0.18 0.18 0.92 0.48 0.72 0.53 0.49 0.86

C 0.94 0.42 0.68 0.47 0.18 0.18 0.92 0.40 0.67 0.50 0.40 1.00

Causal ML O 0.94 0.21 0.54 0.35 0.22 0.38 0.90 0.39 0.57 0.47 0.23 0.22

AutoML O 0.98 0.26 0.63 0.37 0.13 0.15 0.90 0.65 0.82 0.61 0.60 1.00

Recall

RFC

Precision

Table 10: The results of Causal ML and traditional ML on the test set.
Note: colour coding indicates how well the models scored on the performance metric for a given sourcing
solution. The utmost colours green and red indicate the model performed relatively well and worse
respectively on this metric for a given sourcing solution, but do not reflect on overall performance.

General performance
In general, the Recall and Precision did not deviate significantly for the Unrestricted solution, which
was also observed in the previous chapter. For the other solutions, we see that the Recall and Precision
for the other solutions deviate greatly among the tested methods.

Bias
Yet again, there existed a high bias towards the Unrestricted solution for all tested models, which
was concluded from the confusion matrices given in Appendix D.2. This bias was less strong for the
DRRFPL, but the mispredictions were now on the other solutions, resulting in a lower Precision for
the other solutions. This would in practice mean that planners investigate more expensive solutions
first which are not the most effective. The previously observed small bias from Restricted to
Semi-restricted and the other way around in DRRFPL is partly shared with RFC and AutoML.
Diversely, the Semi-restricted solutions were less often mispredicted on Restricted, especially for
the resampled models. Hence, traditional ML could better distinguish between those solutions

6.2 Evaluation and discussion

Resampling
In the previous chapter, we concluded that the resampling strategies caused a loss in information
of the majority class. Hence, we changed the undersampling method to a less aggressive method.
However, as we could see in the performance metrics and confusion matrices, it showed about the
same behaviour but less strong. For the majority class Unrestricted the Recall decreased and the
Precision increased. For the other classes, the Recall increased, and the Precision decreased. Except
the class Repair, where both increase when the population is resampled. A possible explanation for
the repeated failure of resampling could be because resampling techniques are generally developed
for binary classification problems and, as a consequence, multi-class classification problems become
harder to resample [He and Garcia, 2009,Wang and Yao, 2012]. In literature, our multi-class imbalance
problem is called "multiminority", as there exist multiple minority classes and one majority class [Wang
and Yao, 2012]. The authors of previously mentioned work concluded the following: "Oversampling
does not help the classification and causes overfitting to the minority classes with low Recall and
high Precision values. Undersampling is sensitive to the number of minority classes and suffers from
performance loss on majority classes.". The first statement was in our case not completely applicable,
as we first undersample our minority samples. However, the observed behaviour in our study supports
the second statement on undersampling. Altogether, we conclude that this strategy to deal with class
imbalance did not improve the predictive performance in our problem.

AutoML
According to the model assessment, AutoML performed about the same as the RFC-O, and both
methods outperformed Causal ML. As explained before in Section 6.1.3, one of AutoML’s limitations
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is regarding the hyper-parameter optimization. We had to choose one performance from a limited list,
and we could not see the performance of each fold. As a result, the model and its hyper-parameters did
not outperform the RFC on our determined performance metrics. From this point of view, we suggest
that the practice of AutoML should preferably be used if the chosen performance metric matches your
performance metric, and is solely one. Another, by Microsoft known, drawback of AutoML (in Azure)
is the inability to inherently deal with class imbalance. Even though they state one could resample
before using AutoML, this makes the possibility of using K-fold CV less appropriate. The authors
of [Zöller and Huber, 2021] argue that one of the other drawbacks is interpretability. While it can
choose less intrinsically interpretable models, the models and its hyper-parameters can be extracted
and deployed in an integrated development environment and made interpretable there with agnostic
methods like SHAP. Nevertheless, the convenience and the achieved performance of this method shows
high potential. Hence, this method could be used by ASML to save time on model development when
the problem is not limited by the earlier mentioned obstacles of this method.

Best model
In the previous sections, we explained how the performance deviated between the traditional and
Causal ML, but in the same way how the traditional ML methods perform similarly. Next to that,
the significantly better performance allows for better knowledge discovery on this problem with ML
Interpretability. Further, we showed that resampling did not improve predictive performance for
traditional ML, and the non-resampled data set showed the best results. Although one should pick
the simpler model in case of the same performance according to the Law of Parsimony, which is also
known as Occam’s Razor, this should always be justified [Elder, 2018, Raschka, 2018]. In our case,
we prefer RFC over the AutoML selected voting ensemble model, because of its implementability and
model specific ML possibilities. Accordingly. we selected the RFC-O as the best model. Though, we
would like to stress that the model is failing to classify a significant number of cases correctly, hence
planners would make sub-optimal or bad decisions. Moreover, poor accuracy can erode the end-users
trust [Yin et al., 2019].

Bias
As mentioned in the previous chapter, a possible source for the bias could be the algorithm to user.
In this chapter, we increased grid size for the hyper-parameter tuning and used K-fold CV and could
search if less complex models would result in less bias. Since we still obtained the same bias as we
did in the previous chapter, we could argue that the bias is not coming from the algorithm to user,
but rather from data to algorithm, see Section 5.3 for an explanation on both definitions. Besides
resampling, research argues that feature selection is the other method on data level which can help to
overcome the effect of class imbalance on the bias [Ali et al., 2013, Leevy et al., 2018]. This mainly
is a result of the matter of class complexity, also known as class overlap or class separability which
describes how distinguishable the classes are from one another within the data [Ali et al., 2013]. The
authors of previously mentioned work argue "When overlapping patterns are present in each class for
some feature space, or sometimes even in all feature space, it is quite hard to determine discriminative
rules to separate the classes. The overlapping feature space caused the features to lose their intrinsic
property thus making them redundant or irrelevant to help recognize good decision boundaries between
classes". Consequently, a classifier’s generalization capability can be negatively affected in terms of
bias by this class imbalance. In the next chapter, we analyzed how this bias could be reduced with
feature selection based on several model agnostic ML techniques. This stresses the importance of
investigating and mitigating this bias before applying this model in practice in order to give unbiased
support with fewer mispredictions to planners.

Causal ML
As explained earlier in Section 2.2.1, comparing Causal ML and traditional ML is usually not possible
on performance metrics used in traditional ML. However, we justified the comparison of these traditional
ML metrics as policy learning and optimization is rather a classification problem. In the previous
chapter, we argued that the used objective function of this optimization method did not reflect on
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our chosen performance metrics, which could have caused the bias and disappointing performance. In
this Chapter, we compared Causal ML to traditional ML, and observed somewhat the same behaviour
in terms of bias among all methods. Further, the variance observed between the validation sets and
the test set was smaller for Causal ML. This indicates that the model is more robust and is doing a
better job in generalizing, which is one of the flaws of traditional ML as explained in Section 2.2.1.
Nevertheless, the results showed how traditional ML outperformed Causal ML in terms of predictive
performance. Fernández-Loría and Provost (2022) argued that if the noise in the causal features is
greater than in the non-causal features, traditional ML techniques may be more effective than Causal
ML approaches. Reflecting on our case, this could make sense. For example, The causal feature
Stock in our data is not accurately measured, which may lead to less accurate results when using
Causal ML. On the other hand, the feature Criticality is more accurate and may lead to better
predictions when using traditional ML. Lastly, as explained in Section 5.3, the current performance
of Causal ML would make the explanations less useful, and the currently used package does not yet
support model-agnostic ML Interpretability methods. By way of contrast, traditional ML has a higher
performance and can be used with model-agnostic methods.

6.3 Conclusion

In this chapter, we aimed to compare a Causal ML method with traditional ML methods when applied
to predicting the most effective sourcing solution. Besides, we tested two different resampling methods
to overcome the negative effects of the high class imbalance. The models were trained and validated
with the more robust stratified K-fold cross-validation method.

In particular, we tested two resampling techniques to deal with the class imbalance and to mitigate
its degrading effect on model performance. Altogether with the previous chapter, we concluded that
aggressive and less aggressive undersampling, and undersampling and oversampling combined methods
did not enhance predictive performance. Even though, the minority classes’ Recall increased, its
Precision, which we find more important for those classes, decreased significantly. Additionally, the
Recall for the majority class dropped, which is undesirable as well. Though, by undersampling less
aggressively, strength of the bias from the true label Unrestricted to other labels decreased, compared
to the undersampling in the previous chapter. Nevertheless, resampling did not improve the predictive
performance of the RFC, which could be due to the fact that this strategy to mitigate class imbalance
is less effective for multi-class problems.

In Section 5.3, we explained several potential sources for the present bias. By increasing our
hyper-parameter grid and validating the models’ performance with the more robust stratified K-fold
CV, we tried to reduce this bias coming from "Algorithm to user" bias. Unfortunately, this did not
result in a significant decrease. Hence, this suggests that the bias is rather coming from data to
algorithm, which is addressed in the next chapter.

Similarly as in the previous research question, the Causal ML model achieved a low performance.
Besides the possible explanations given in the previous chapter, we argue that the noise present in
important features for Causal ML made these features less accurate than the important features for
traditional ML. Nonetheless, we observed some similarities in the methods’ behaviour, like the bias
towards the majority class. This, again, indicates that the bias is coming from data to algorithm.
From a business perspective, we discourage using this approach of Causal ML in predicting the most
effective sourcing solution. This method performed rather poorly in terms of predictive performance,
and for this reason becomes unreliable for knowledge extraction as well.

On the subject of AutoML, we observed that this method can obtain about the same performance
as the RFC with the same bias present. The limited choice of the to-be-optimized performance
metric, and the inability to use k-fold CV with resampling in Azure AutoML, could have hindered
the development of a better model than the manually developed RFC. We recommend utilizing this
method if the predictive modelling problem is not constrained by these factors.
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7 Machine Learning Interpretability
In the previous chapter, the best predictive ML model was chosen. For sub-research question three,
we aimed to explore how ML Interpretability methods can be used to validate the model, discover
the relationships modelled, and improve the model with the gained insights. These three applications
all contribute to a more valuable model for decision-support because the explanations and model
behaviour can be justified as well as it can leverage the performance. This chapter starts by applying
several ML Interpretability techniques to gain insights into the modelled relationships. In addition, we
performed an error analysis to gain insights into the data regions where the model poorly performed,
which can be found in Section 7.4. Eventually, the insights obtained until then are discussed and
validated in Section 7.5. Throughout these analyses, multiple MDOs were identified. We trained
MDO based ML models and tested them to see if they could improve the predictive performance
compared to the best model from the previous chapter. The results of this analysis can be found in
Section 7.6. Furthermore, we evaluated the utilized methods in 7.7. Finally, the chapter concludes in
Section 7.8.

Before the methods and their outcomes are discussed, we would like to throw light on the
methodology used within this chapter regarding the data. Firstly, we split our data into three
sets: training, validation, and testing. We trained the ML model on the training data, applied
interpretability methods on the validation data, and compared the performance of different model
debug opportunities (MDO) on the test data. No cross-validation was performed at this stage. We
did this for mainly two reasons: 1) It would be unfair to use the test set to look for improvements and
test the model again on that test set. A fairer approach would be to identify model improvements
based on a validation set and test the performance on the original test set. 2) For some of the
ML Interpretability techniques, using the training data for interpreting the model could give a too
optimistic measurement as it is trained on this data. Hence, it would be better to use unseen data for
this purpose [Molnar, 2020].

7.1 Model-specific Interpretability

As explained in Chapter 2, model-specific interpretation methods are limited to specific model classes,
which in our case is based on the inner estimators of the RFC: Decision Trees. Decision Trees are
easily interpretable because their logic can be traced from the root node to the predicted leaf node.
However, as the tree becomes more complex, its interpretability decreases. In the current situation,
the trees are too complex to interpret as a whole system. However, the feature importance based on
the split criterion in the Decision Trees can still be used to understand the global model.

MDI Feature importance
The intrinsic feature importance measure in Random Forests is based on the Mean Decrease Impurity
(MDI) for the chosen splitting criterion [Breiman, 2001], which in our case is the Gini coefficient.
This technique computes the normalized total reduction of the Gini coefficient brought by a particular
feature. The 20 features with the highest MDI feature importance can be found in Figure 13.
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Figure 13: MDI feature importance

5!The feature importances were generally
low, indicating that no single feature is a
strong predictor for the solution. This may
suggest the presence of multicollinearity
among the features. Of the top 13 and
14 out of 20 displayed features, most
were numerical, indicating that categorical
features were generally less important.
Additionally, several correlated features
had similar feature importances.
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The three observations are in line with the drawbacks when evaluating feature importance with this
model-specific technique. Research argues that this technique suffers from mainly two biases [Strobl
et al., 2006,Wei et al., 2015]. Firstly, this technique tends to inflate the feature importance of features
with a high cardinality. These features have a higher chance of appearing more than once in an
individual tree and could result in an increase in their importance. Consequently, our one-hot-encoded
categorical features seemed to be less important. The authors of the previously mentioned work
suggest that Permutation Importance (PIMP) would be a better technique for feature importance
identification. Secondly, in the case of multicollinearity (correlated predictor features), the feature
importance of one or more correlated features could be shown as weak as it can select one of the
features and neglect the importance of the other one. In the next Section, this problem is addressed
by removing correlated features with hierarchical clustering on Spearman rank-order correlations.

7.2 Hierarchical clustering correlations

To overcome the pitfall caused by multicollinearity, a feature selection was performed on the predictor
features’ correlations. This was done by hierarchical clustering the features on their Spearman
rank-order correlations [Dormann et al., 2013, Azpiroz et al., 2021]. Subsequently, a threshold was
chosen for which only a single feature from each cluster was kept if their cluster distance was below
this threshold. The main advantage over pairwise correlations is the fact that we can observe clusters
of correlated features instead of only two correlated features. A visualization of the 20 most important
features hierarchically clustered on their correlations is shown in Figure 14a. The choice of threshold
was based on visual inspection of the graph, where a trade-off was made between loss in information
and collinearity. A value of 0.5 was chosen which allowed to exclude highly correlated features for
which the removed feature did not add too much value compared to the kept feature. This threshold
was not only used for the 20 features with the highest importance, but also for the total feature
set. The feature reduction resulted in a decrease in the feature set from 140 to 99. Consequently,
this also formed the first potential MDO and is called MDO-1. The 20 features with the highest MDI
feature importance after the feature selection are shown in Figure 14b. As can be seen, this removed
the feature Time_to_UND_SO which was correlated with GOC_Entry_time_to_und. Consequently, the
feature importance of the latter increased. Yet, there were no features that have high importance, but
the 14 highest features from Figure 14b show to have substantial importance compared to the other
features. We, therefore, selected these features for the second MDO: MDO-2.
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Figure 14: Feature importance analysis after feature exclusion

The removal of some features also caused a loss of information. To recapture this lost
information, one additional feature was engineered. This feature was the difference between the
features GOC_Entry_time_to_und and the previously removed Time_to_UND_SO, and was called
Time_to_UND_diff. Consequently, we could capture for example if an EMO instantly got sent to
the GOC or if the SO already existed for a longer time. This new feature was added to the reduced
feature set and raised the third MDO: MDO-3.
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7.3 Model agnostic methods

Model-agnostic techniques are applicable to any ML model and are applied after the model has been
trained (post hoc). These methods can give different insights and overcome the bias of the MDI
technique towards features with high cardinality. In the next sections, three different methods are
discussed.
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Figure 15: Permutation importances

Permutation Importance (PIMP) is an agnostic
feature importance technique that measures the
difference in prediction performance after a
feature’s value is permuted [Breiman, 2001].
This is done for all features, whereafter they
are ranked on the negative impact they have
on the performance. One of the drawbacks
of this technique in our case was that the
importance is based on one performance metric.
Since we did not have one single performance
metric, balanced_accuracy was chosen, which
is calculated as the average of the individual
solution accuracies, with each solution being
weighted equally. A higher balanced accuracy
can be seen as a sign of the model’s robustness
and reliability, and can help the planners
make better decisions based on the model’s
predictions. The results are shown in Figure
15.

When analyzing the results, we could again see that the (permutation) feature importances were
not that high and none of the features was particularly strong predictors of the target variable.
Furthermore, the standard deviations of the PIMPs were overall the same and neither high nor small.
This suggests that the feature informative levels do not explain most of the variance (changing a
feature’s value can influence the feature’s importance). Accordingly, this means that the model could
be overfitted, because of the moderate variance. As fourth feature selection, we chose to select the
features with substantial feature importance raised by this model agnostic technique for the fourth
MDO: MDO-4. This accounted for the 14 features with the highest feature importances.

Shapley
By calculating the contribution of each feature to the prediction, SHapley Additive exPlanation
(SHAP) seeks to explain the prediction of an instance [Lundberg and Lee, 2017]. Shapley values are
calculated using the SHAP explanation approach which uses coalitional game theory. This technique
starts by locally computing the SHAP values but can be used globally by summarizing on class and
problem scope.

In Figure 16a, the SHAP feature importances per solution can be found. In line with the previously
used methods, there were no features that predominantly determined the solution. Next to that, about
the same features and their importance order appeared in the 20 highest ranked features. Moreover,
the feature importances per solution can be analyzed. As can be seen, the features are generally most
important for the majority class Unrestricted. Among the minority classes, features seem not so
important for Restricted and Repair. This was not a surprise as the model did not have a high
predictive performance for these features, and is not able to model their relationships properly. In
order to see how the value of each feature per solution impacts the model output, beeswarm plots
were made, which can be found in Appendix E.2. As illustration, the beeswarm summary plot of
Unrestricted can be found in Figure 16b. We used these plots later during model validation. The
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18 features with the highest importance were chosen to be included as feature selection for the fifth
MDO: MDO-5, as they showed to have substantial feature importance compared to the others.
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(b) SHAP beeswarm plot Unrestricted

Figure 16: SHAP analysis

Feature importance overlap
In order to compare the obtained results, we summarized the top 10 ranked features per feature
importance method, which can be found in Appendix E.1. We observed that the different methods
do not completely agree on the exact feature importance rankings, but show a decent overlap. The
fact that different feature importance measures result in different rankings is not unknown and is even
likely to happen [Rajbahadur et al., 2022]. Rajbahadur et al (2022) reported that this is especially the
case when comparing model agnostic and specific methods, because of feature interactions. In order to
mitigate this effect, these feature interactions should be reduced. The authors hypothesize that when
this is done, SHAP and PIMP would strongly overlap. In our case, we reduced the feature interactions
by hierarchical clustering on correlations, but the model agnostic methods did not overlap more than
with the model-specific MDI. Particularly, MDI and PIMP had a much greater overlap compared
to SHAP with these techniques. This contradiction could possibly be explained because the feature
interactions were still too strong as a result of choosing a too low threshold for removal.

Partial Dependence Plot
Up until now, we obtained the feature importances (for each solution), and analyzed the impact of
the features’ values on the model output. Supplementary, Partial Dependence Plots (PDPs) were
used to describe the relationship between the target variable and the features. This tool enables us
to comprehend how various values of a specific attribute affect the predictions made by the model.
Thereby, it demonstrates if the predicted class probability of a solution and a feature have a linear,
monotonic, or more complex relationship. One drawback of this method is the moment a feature
could be really important according to other methods such as PIMP, but the PDP could be flat since
the feature affects the prediction mainly through interactions with other features. To overcome this
drawback, Individual Conditional Expectation (ICE) plots can be added [Goldstein et al., 2015,Molnar
et al., 2020]. This local agnostic technique shows the partial dependence of an individual sample when
the value of a selected feature changes, and can show how individuals differ from the averaged partial
dependence line. However, both PDPs and ICE plots become less reliable for values for which fewer
data points were available, as such that these regions should be interpreted with care. In the plots,
the relative distribution of the data on the features can be found as lines on the x-axis. We made
both PDP and ICE plots for the 10 features with the highest importance according to the SHAP
feature importance summary plot in Figure 16a. The results can be found in Appendix E.2, and an
illustration of both PDP and ICE plot can be found Figure 17.
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Figure 17: PDP and ICe analysis

We mainly observed monotonic relationships between the features and the predicted class probability
of the solutions being the most effective ones. This indicates that there were hardly any complex
relationships for features to predict the solution modelled. The ICE plots allowed to see if there was a
high variance in terms of partial dependence per sample. For some features, there was some variance
visible, but none of the features’ PDP was strongly affected by this as such that the partial dependence
seemed smaller. Hence, there was not a lot of variance in the partial dependence per feature value on
the samples. This suggests that the features influence the prediction in the same way.

7.4 Error analysis

As explained in Section 2.2.2, error analysis can be used to debug ML models. We used well
known visualization techniques utilized in debug tools to discover subgroups with significantly more
mispredictions. The used techniques and the findings are discussed below, and an illustration of each
technique can be found in Appendix E.3.

1. Box plots
We first made box plots for the count of mispredictions for each feature on all true solutions
together. Unfortunately, this did not show any significant difference between subgroups, as the
distributions of correct and mispredicted per feature were generally the same.

2. Box plots per true solution
As the previous box plots showed an aggregated view and did not give any insights, we used
the same technique for the solutions separately. Yet, this gave no useful insights as well. Some
differences were observed among the solutions, but these were not significant due to the small
sample size for some feature solution combinations.

3. Pair plots on features
In order to see if the relationship between two features could show any subgroups, we made pair
plots for the 20 most important features. Unfortunately, this did not provide any useful insights
as well.

4. Principal Component Analysis 3d plot
Lastly, we reduced the feature set to three dimensions with a Principal Component Analysis
(PCA) [Tipping and Bishop, 1999,Zheng et al., 2006]. After analyzing the errors on this reduced
feature set, we could retrieve the features correlated to the errors. A 3d plot was made, but this
unfortunately again did not give any useful insights as well.

In this section, we tried to identify subgroups for which significantly more mispredictions were
made. This analysis on a global level did, unfortunately, not result in any insightful information.
This increases the likelihood that the bias is coming from the data to algorithm and specifically the
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measurement and representation bias, as it seems that these errors are the result of rather noisy
data. A next step in debugging could be analyzing the mispredictions on local level by using local
ML Interpretability methods [Amershi et al., 2015,Pradhan et al., 2021]. This could then be used to
search for the cause of each error. According to Amershi et al (2015), these causes could then belong
to one of the three common error sources: mislabeled data, feature deficiencies, and insufficient data.

7.5 Validation and knowledge discovery

With the previous ML Interpretability methods, we gained an understanding on the model’s working
and the modelled relationships among the features. In general, the same features were found important,
but none of them predominantly determines the solution. As explained earlier, this could be due to
overfitting, the curse of class complexity, and the possible presence of multicollinearity. Next to
this, we defined several MDOs which serve as feature selection in order to debug the model. In
order to analyze the modelled relationships, we used SHAP beeswarmplots, PDPs and ICE plots.
For the majority of the features, the different techniques agreed on the feature’s relationship to
the target variable. Also, for most of the features, the relationships were the same for all other
solutions than Unrestricted. This could indicate that many features determine the distinguishment
of Unrestricted vs the rest. This is actually not strange as the other solutions could be seen as
an exceptional solution. Nevertheless, we also observed differences in relationships between the other
solutions than Unrestricted. For example, the predicted solution probability increases if the machine
group is HMI for the solutions Conversion and Restricted, but decreases for the other solutions.
This indicates that this feature on the machine group being HMI is a predictor variable used to
distinguish between these minority classes.

For the purpose of model validation and knowledge discovery we used the insights gained from the
previously discussed techniques. For each of the most important features per solution, we assessed the
PDPs and SHAP beeswarm plots on their shown relationships and importance. Next, we presented
and discussed the relationships in an interview with SMEs. During this interview, it became apparent
that the comprehensibility of some of the result visualizations was low for the SMEs as they were not
familiar with these ML Interpretability techniques and visualizations. Instead, we proposed a summary
table where the feature importances and effect towards the solutions were displayed. This summary
table was based on the SHAP and PDP plots, where for each solution the 10 most important features
were analyzed on their importance and response. We ranked the features per solution on the impact
they have on the predicted class probability. We ranked a feature high for a certain solution if there is a
relatively high increase in predicted class probability with an increase for this feature. For features that
did not have a high impact, they were ranked in the middle. Finally, for a feature solution combination
where there was a relatively high decrease in predicted class probability, this feature was ranked low.
Subsequently, we used directional coloured arrows to point out the direction and magnitude of the
impact. This allowed us to represent the results as a simplified version of the outcomes of the model.
This visualization can be found in Appendix E.4. However, this was only possible for the feature
solution combinations which had a monotonic relationship, as the impact could be very low for more
complex relationships. The SMEs perceived this summary as more comprehensible. Though, since
this method simplifies the outcomes of the techniques, the preliminary results of the techniques were
analyzed first to identify particularities that were not captured by the summary. For example, the rate
of growth on predicted class probability for certain data regions is not displayed. As a consequence,
some important particularities could stay undiscovered. Eventually, we used this summary together
while mentioning the particularities that were not covered by the summary to validate the results with
the SMEs and stakeholders.

The outcomes of this interview can be found in Appendix E.4. Generally, the results were consistent
with expectations. The features present among the most important features were as expected more
important than the features ranked lower. For instance, the results showed that the feature Customer
did not have high feature importance, which indicates customers are treated the same, as expected.
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Also, there were no surprises regarding the relationships to the predicted probabilities of the solutions,
and their (separate) importance on this solution. Though, some features like Stock were expected to
be more important. As earlier explained in Section 5.3, this could be due to the measurement bias.
We used a weekly report on the stock values, which becomes less accurate for EMOs that were created
later in the week. Next, this feature described the available Unrestricted and Semi-restricted
stock, which is an aggregation and makes the feature less informative, as well as there are no stock
features for the other solutions which could have helped.

7.6 Model debugging

In this section, a summary of the identified MDOs is given, whereafter we tested if the identified
MDOs can increase the predictive performance. In essence, we performed a feature selection for all
identified MDOs as we selected subsets of relevant features from a larger set of features to use in
building a ML model. Research mainly categorized the different feature selection techniques into
three categories [Chandrashekar and Sahin, 2014,Miao and Niu, 2016]. The first category is known as
the filter techniques which is applied as data preprocessing technique in order to eliminate features on
their data characteristics, like variance. Secondly, there are wrapper techniques which are based on the
intended ML model itself to evaluate. Thirdly, a combination of the previous two is called embedded
feature selection techniques which iteratively evaluate each iteration of the model training process and
select those features which contribute the most. Essentially, we used filter and wrapper techniques
to obtain our MDOs. Firstly, we reduced the multicollinearity based on hierarchical clustering on
correlations, which is a filter technique. Whereafter, we used techniques that are based on the model
performance (except from MDI). The filter technique reduced the feature set to some extent, but still
resulted in a big feature set. The wrapper method was used for the model agnostic ML Interpretability
techniques, as they ranked their feature importances based on the impact on model performance.
Finally, by nature, our RFC is an embedded method itself as it selects the best features, according to
the chosen split criterion itself. However, this still provides the opportunity to overfit, which we tried
to reduce with the identified MDOs. In summary, we have the following MDOs:

1. MDO-1: This feature set was obtained by removing the feature interactions by hierarchical
clustering on correlations. This feature selection removed 41 correlated features, which resulted
in a feature set size of 99.

2. MDO-2: This feature set was the result of interpreting the MDI feature importance after the
correlated features were removed. Hence, the 14 most important features according to this
model-specific method were chosen.

3. MDO-3: This feature set contained an additional engineered feature to recapture the lost
information by removing the correlated feature Time_to_UND_SO. The addition of this feature
resulted in a feature set of 100 features.

4. MDO-4: This feature set was identified based on the model agnostic technique PIMP. The 13
highest ranked features were chosen for this MDO.

5. MDO-5: This feature set contained the 18 highest ranked features determined by the SHAP
feature importance.

We used the same method for hyper-parameter tuning for the MDOs as used in the previous
chapter. Subsequently, we tested the MDOs on the test set and compared them to the best model
from the previous chapter, for which the results can be found in Table 11. Overall, the results did not
deviate as much as seen before in the previous chapters. MDO-2, MDO-4, MDO-5, showed a significant
lower Precision for all other solutions than Unrestricted compared to the other MDOs and full
feature set. These MDOs also do not compensate for their loss in Precision on the Recall scores. After
inspecting the confusion matrices, nothing could be concluded about the MDOs except for having a
slightly higher bias. The bias direction and magnitudes differed per MDO but were not worthwhile
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to mention. According to the performance metrics chosen in Chapter 5, the full, MDO-1, and MDO-3
performed best. Following the importance of each metric on the respective solutions, these MDOs
outperformed the full feature set. Even though the scores were almost equal, MDO-3 performed slightly
better. This suggests that removing the feature interactions and the addition of the engineered feature
evidently improved the model’s predictive performance. Given these points, the ML Interpretability
feature selection techniques that could be classified as wrapper technique did not enhance predictive
performance, but decreased it. This could be the result of a too severe feature selection whereafter
the models were forced to generalize too much.

Unrestricted Semi-restricted Conversion DSP Restricted Repair Unrestricted Semi-restricted Conversion DSP Restricted Repair

Full 0.99 0.20 0.58 0.36 0.10 0.12 0.89 0.74 0.86 0.65 0.65 0.80

MDO-1 0.99 0.15 0.51 0.27 0.07 0.12 0.88 0.87 0.87 0.73 0.76 1.00

MDO-2 0.99 0.15 0.52 0.29 0.08 0.15 0.89 0.64 0.79 0.62 0.46 1.00

MDO-3 0.99 0.15 0.52 0.26 0.08 0.12 0.88 0.87 0.88 0.73 0.79 1.00

MDO-4 0.99 0.16 0.52 0.30 0.09 0.15 0.89 0.60 0.79 0.61 0.45 1.00

MDO-5 0.98 0.18 0.51 0.32 0.10 0.15 0.89 0.62 0.79 0.60 0.52 1.00

PrecisionRecall

Table 11: The results of the MDOs on the test set.
Note: colour coding indicates how well the models scored on the performance metric for a given sourcing
solution. The utmost colours green and red indicate the model performed relatively well and worse
respectively on this metric for a given sourcing solution, but do not reflect on overall performance.

7.7 Evaluation

With the aim of addressing our third sub-research question concerning the use of ML Interpretability
methods for model validation, improvement, and knowledge discovery, we demonstrated the application
of several post hoc methods for these purposes. There are various methods in the literature for
evaluating the effectiveness of the methods employed in this study [Carvalho et al., 2019]. Despite
the existence of properties on which ML Interpretability can be evaluated, it is not clear for all of
them how to evaluate and measure them [Robnik-Sikonja and Bohanec, 2018, Carvalho et al., 2019].
Nevertheless, we could assess the models on the three goals in ML Interpretability earlier discussed
in 2.2.2, namely Accuracy, Understandability, and Efficiency [Rüping et al., 2006]. Still, these goals
are partially connected to the properties outlined by Robnik-Sikonja and Bohanec (2018), such as
the concept of fidelity, which is analogous to Accuracy, as defined by the aforementioned authors.
Accordingly, we decided to evaluate the Interpretability of the utilized methods on the three goals
for which the results can be found in Appendix E.5. This showed the advantages and disadvantages
of each method, albeit it demonstrated there is no "best" or one-size-fits-all method. They all differ
in their objective, and what they wish to display, which makes the one method more comprehensible
because of a simple objective, but the other is less comprehensible but more insightful and has a higher
Accuracy. Therefore, we suggest that these different methods should be utilized in a complementary
manner, depending on the specific insights or relationships that need to be captured. Nevertheless,
we argue that SHAP beeswarm plots, PDP and ICE plots convey similar information and therefore
do not need to be used simultaneously, unless one wishes to conform its findings.

7.8 Conclusion

In this chapter, we used several ML Interpretability techniques to visualize, analyze, and interpret the
modelled relationships by the best predictive model from Chapter 6. We demonstrated that reducing
the multicollinearity by hierarchical clustering on correlations gives a more generalized and less biased
view of the feature importances and gives a less biased. Overall low feature importances were found,
which indicates that the model is overfitted, is prone to class complexity, and/or high multicollinearity
is present. Especially, the features were found less important for the minority solutions. In order to
overcome these potential causes for the low model performance, we used the feature importances to
create MDOs, which served as feature selections. Among the different techniques used for the retrieval
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of the feature importances, the top 10 were mainly the same, but the ranking differed. As explained,
these differences in ranking could be due to still present multicollinearity. We used the insights for
the purpose of model validation and knowledge discovery, with mainly no unexpected relationships.
Though, we noted that SMEs which are not familiar with these techniques find methods with higher
Accuracy, like PDP or ICE plots, harder to comprehend. A summarized version was made which was
perceived as better understandable, though it was supported with information on particularities not
covered by this summary. The use of several methods was on the one hand convenient as they could
complement each other, but on the other hand, some had a big overlap which makes using all of them
valuable. Subsequently, we tried to identify subgroups of mispredictions that could possibly explain
the bias present in the model by using data visualization techniques used in modern debug tools.
Unfortunately, none of the visualizations revealed any subgroups for mispredictions. This indicates
that the bias present is rather coming from the data to algorithm. Future work could use local
ML Interpretability methods, to identify if these mispredictions come from mislabeled data, feature
deficiencies, and/or insufficient data. Finally, we compared the performance of each of the identified
MDOs. We concluded that the feature selection based on the feature importance measures resulted in
the models generalizing too much, while removing feature interactions and refinement of features can
enhance predictive performance. As has been noted, there still exists a high bias towards the majority
solution. In the next chapter, the best ML prediction model is used to see if model abstention can
enhance decision-making in our problem context, and mitigate this just mentioned bias.
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8 Model Abstention
During the last three chapters, we developed several predictive ML models with the aim to support in
decision-making on the most effective sourcing solution. The obtained best model still has a reasonable
amount of misclassifications, which could lead to poor decisions and a low end-user’s trust. With this
in mind, we explained in Sections 1.6 and 2.2.3 how model abstentions could mitigate those effects by
abstaining from a prediction based on its prediction uncertainty. In this chapter, we aimed to explore
how model abstention could be used for this purpose. We first investigated the costs of performing
a solution in Section 8.1. Next, we analyzed and developed a rejector that learned to abstain from a
prediction with high uncertainty in Section 8.2. Thereafter, we compared the potential savings of the
ML model with and without model abstention to the current and optimal workflow in Section 8.3. A
final conclusion on this chapter is drawn in Section 8.4.

8.1 Cost estimations

The business motivation of this study was mainly to decrease the number of redundant checks in the
manual EMO sourcing process. Throughout this thesis, multiple models were trained and tested, and
eventually, an RFC with reduced multicollinearity and additional engineered feature was considered
as best performing. To see if the best model can realize savings in terms of time spent on EMOs, the
costs of performing the checks for the solutions were estimated in interviews with SMEs and based
on experienced (>2 years) planners. For that reason, the obtained absolute savings could in practice
be more optimistic as less experienced planners take more time per check. As a matter of fact, we
only knew what the most effective solution on a historical EMO had been, and not if other solutions
would have been feasible or not. Together with the stakeholders, we assumed for the potential saving
calculation, that the most effective solution is the only feasible solution. Consequently, if the solution
with the highest predicted class probability is historically seen not the most effective one, the planner
would continue with the solution with the second highest predicted class probability, and so on.

An overview of the time spent for each check for each solution is given in Appendix F.1. Accordingly,
the time spent on an EMO with the current workflow was calculated by adding each redundant and
non-redundant checks of a certain solution. On the contrary, the time spent on an EMO following
the ML model was calculated by adding each performed non-redundant check until the most effective
solution was found to the activity set and then calculating the time spent. The time spent for the
optimal workflow is calculated by only adding the non-redundant checks for the most effective solution.
We would like to remark that the prediction model cannot save time on the solution Unrestricted
because it contains only necessary checks for this solution.

8.2 Model abstention development

As explained in Section 2.2.3, there are several decisions to be made when developing a model
abstention. Specifically, we considered what kind of rejector type would be in line with our objective,
how we would learn the rejector, and what learning objectives should be optimized. In this section, we
first elaborate on these choices, the analysis of the current uncertainty in the ML prediction model,
and the learning of the abstention model when it is beneficial to reject a prediction.

Rejector Design
In Section 2.2.3, we distinguished two types of rejectors: novelty and ambiguity based. We chose the
ambiguity type because of three reasons. Firstly, this complements our ML Interpretability study
as we would analyze the model’s behaviour on a new aspect: prediction uncertainty. Next to this,
some ambiguity rejectors do not need another ML model to be developed, whereas novelty rejectors
would always need this. Finally, the effect of the bias learned by the model could be mitigated. In
terms of learning strategy, we chose to focus on sequential learning. In this way, we would not have
to change our ML prediction model and would be allowed to better understand its current behaviour.
The used RFC from scikit-learn has the possibility to retrieve the predicted class probability of an
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EMO on a solution. These probabilities could reflect on how confident or uncertain the model is about
its prediction is, e.g. if the highest predicted probability would be 0.4, the model is less sure about
this prediction. On that account, we could set a threshold for which the model should abstain from
its rejection. This threshold would thus reflect how confident a model should be about its prediction
when we want to give this prediction to the decision-maker. Previous work showed how putting this
threshold on the predicted class probability higher than the average could significantly increase the
accuracy [Maggi et al., 2014].

Uncertainty
Before we chose the reject threshold(s), we first explored the model’s behaviour in terms of uncertainty
for mispredictions. In order to do so, we made box plots of the predicted class probabilities for each
predicted solution per True solution. Such plots visualize the (un)certainty, which is the predicted
probability of the predicted solution in our case, of the model when it (mis)predicts a given solution.
From these plots, we could analyze how certain the model was when predicting a given solution when
it was correct or incorrect. The results can be found in Appendix F.2, but the plots for Unrestricted
and Conversion are shown in Figure 18 as illustration. We chose these solutions as they represent the
general contrast between the majority and minority classes well. As can be seen in Figure 18a, the
predicted probability for wrongly predicted EMOs from all other solutions than Unrestricted were
quite high for this solution, which means the model was fairly sure about its prediction, despite its
incorrectness. This was not unexpected because of the earlier observation of the model bias towards
this solution. Comparing this with Figure 18b, the model was less sure about its mispredictions on the
solution Conversion. In particular, we observed that the model was quite sure for the samples which
were mispredicted on solution Unrestricted (median = 0.76), and less sure on the mispredictions on
other solutions (median = 0.59).

Unre
str

ict
ed

Re
str

ict
ed DSP

Se
mi-re

str
ict

ed

Con
ve

rsi
on

Re
pa

ir

True solution

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ed

ict
io

n 
pr

ob
ab

ilit
y 

so
lu

tio
n 

Un
re

st
ric

te
d

Error boxplot true solution and predicted probability
 on solution Unrestricted

Correct
0
1

(a) (Un)Certainty of the ML model when
(mis)predicting on the solution Unrestricted per
True solution

Con
ve

rsi
on

Unre
str

ict
ed DSP

Re
pa

ir

Re
str

ict
ed

True solution

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ed

ict
io

n 
pr

ob
ab

ilit
y 

so
lu

tio
n 

Co
nv

er
sio

n

Error boxplot true solution and predicted probability
 on solution Conversion

Correct
0
1

(b) (Un)Certainty of the ML model when
(mis)predicting on the solution Conversion per True
solution

Figure 18: Box plots on predicted class probability per True solution when (mis)predicted on
solution Unrestricted and Conversion.

Threshold Optimization
In order for the decision-making process to benefit from such model abstention, the thresholds of
when to abstain should be determined. As explained in Section 2.2.3, this is in research mainly done
based on the trade-off between model accuracy and sample coverage. Attention should be paid to
how this predictive performance is measured, as the rejection of predictions splits up this performance
in non-rejected prediction performance, classification quality and rejection quality [Barandas et al.,
2022]. In the end, we were only interested in how the rejector could enhance the earlier obtained ML
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model, as it cannot change the model’s prediction and we do not compare different ML systems and/or
different rejectors. For this reason, we were only interested in the classification of the non-rejected
samples, which assesses the classifier’s ability in classifying non-rejected samples. Hence, this allows
analyzing the performance metrics, Precision and Recall, earlier used on the prediction problem. We
visualized the rejection probability thresholds of these performance metrics to analyze their behaviour.
The plots can be found in Figure 19. In these visualizations, only the impact on the true solution is
shown. As can be seen, there is no optimal threshold for which all performance metrics improved for
all solutions. Regarding the Recall score, the solutions Unrestricted and Conversion are the only
solutions with a monotonically increasing relationship with an increase in the threshold. This means
that the model is fairly sure about these solutions. Regarding the Precision, all solutions could benefit
from rejecting predictions below a threshold of 0.55, as the Precision score is higher than the original
score for all solutions.
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Figure 19: Abstainity analysis

We could attempt to find optimal values for each threshold according to the performance metrics,
but in the end, the costs saved on the redundant checks was of the highest interest. Therefore, we
compared the time spent on an EMO with the current workflow, as the prediction being rejected, and
the time spent on an EMO with the workflow determined by the prediction model, as the prediction not
being rejected. For this purpose, we first calculated the time spent for each EMO with the prediction
model, and the time spent with the current workflow. Subsequently, optimal threshold values could
be determined to maximize the realized savings by the system. We chose an evolutionary optimization
technique for this purpose because it is an efficient meta-heuristic for solving operations management
optimization problems [Katoch et al., 2021] and easy to implement in Python. We first trained our
best ML prediction model on the training to validate set, whereafter we predicted on the validation
set. The predictions on this validation set were used to determine the best thresholds. The default
settings for the genetic algorithm were used with a constraint on the maximum number of iterations
without improvement being 10. This resulted in convergence after 50 iterations, as can be seen in
Figure 20. The increase in costs saved from the initial population in the genetic algorithm compared
to the best solution was rather small. This indicates that the initial population already contained a
good candidate solution and/or the net gain with an model abstention cannot be very high in our
case.
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Solution Threshold

Unrestricted 0.87

Semi-restricted 0.37

Conversion 0.38

DSP 0.27

Restricted 0.36

Repair 0.33

Table 12: Thresholds per solution

The found thresholds are shown in Table 12. As can be seen, the thresholds for all other solutions
than Unrestricted were fairly low. This means that for these other solutions, the model assertion
recommends to only reject if the model is really unsure. Furthermore, abstaining from predictions
with a predicted class probability below these thresholds would save 533 minutes compared to the
current workflow. Though, these thresholds are not guaranteed to be optimal as a genetic algorithm
can converge to local optima. An exact optimization method could possibly obtain other thresholds
resulting in a better performance. In the next section, we used these thresholds on the test set to
determine the potential savings of the ML model with and without the abstentions.

8.3 Results and potential savings

In this section, we first applied the prediction model with the abstention model on the test set to
analyze the impact on the performance metrics. Thereafter, we analyzed the potential savings of the
ML prediction model with and without the abstention model.

Results
We retrained the ML prediction model on the full training set and predicted the most effective sourcing
solutions for each EMO in the test set. Thereafter, we could determine which EMOs would have been
rejected, and thus would have followed the current workflow. As can be seen in Table 13, as expected,
a lot of the True Positive (FP) EMOs of Unrestricted were rejected, but at the same time also a
lot of the False Positive (FP). For the other solutions, the False Negative (FN) got predominantly
rejected, whereas only a few TP and FP were rejected. This indicates that the bias towards the
majority solution Unrestricted was diminished by the abstention model. In fact, the rejector tackled
the epistemic uncertainty, which is the uncertainty caused by incorrect modelled relationships because
of the lack of knowledge in the model. Specifically, the results indicate that this was the bias-epistemic
uncertainty which was removed.

Solution
Rejected

∆Precision ∆Recall Coverage
TP FP FN

Unrestricted 2184 849 3 0.09 -0.01 0.71

Semi-restricted 5 1 395 0.01 0.35 0.28

Conversion 3 2 183 0.01 0.46 0.52

DSP 0 0 76 - 0.37 0.43

Restricted 2 1 169 0.01 0.21 0.26

Repair 0 0 27 - 0.45 0.21

Table 13: Effect abstention model
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The impact on the performance metrics for the non rejected EMOs can be found in Table 13 as
well. The results show that the Precision slightly increased for some solutions, and, overall, there
was a significant increase in Recall. Nevertheless, as earlier explained, it is important to analyze the
coverage of the total system as well. High performance on the non-rejected samples can be misleading,
as the usability of the system drops with the number of rejected samples. As can be seen in Table 13,
the coverage was comparable to the earlier seen Recall of the results without the abstention model,
which once again implies that the abstention model diminished the bias towards Unrestricted.

As earlier mentioned, both the stated and observed accuracy of a ML system affect the end-users
trust [Yin et al., 2019]. With this abstention model, both accuracies improved, which would be
beneficial for the confidence an end-user would have in the system. However, the low coverage for
some solutions may still lead to a loss of user confidence in the system. This relates back to the birth
of abstaining from a prediction [Chow, 1970], where the optimum should be found between rejected
proportion and the accuracy of the system.

Potential savings
In Section 8.1, we explained how the potential savings could be calculated. Subsequently, we created
a model assertion that learned when it is beneficial to abstain from a prediction based on the model’s
uncertainty. In this section, we compared the costs of four theoretically possible workflows that we
identified during this research.

1. Current workflow: This workflow was the workflow that is currently used in the manual EMO
sourcing process, which is explained at the beginning of this research in Chapter 1.

2. ML prediction model workflow: This workflow was based on the best obtained ML prediction
model. The solutions are sorted in descending order on their predicted class probability, where
the planner starts with the solution with the highest probability and continues to the next if it
turns out to be not feasible.

3. ML prediction model + abstention model workflow: This workflow was based on the
previous workflow, but if the highest predicted class probability was below the optimized threshold,
the current workflow was followed.

4. Optimal workflow: This workflow represented the workflow in an ideal world where the
solution would be known upfront. Hence, only the costs of the most effective solution without
the redundant checks were taken into account.

As earlier this chapter explained, there are no redundant checks for the solution Unrestricted in
the current workflow. Therefore, we did not include the costs for the EMOs with this solution being
the most effective in this analysis. Though, we included the costs for EMOs that were mispredicted
on this solution. In Table 14 the total costs and savings of each workflow on the test set are given.
As can be seen, both ML with and without the abstention model realized cost savings on the test set.
What is more, the rejector saves 56% more minutes compared to the model without these abstentions.
Nevertheless, the ML model with and without the abstentions did not come close to the optimal
workflow. This was as expected for the workflow of ML without the rejector, as we earlier observed
the moderate predictive performance. For the workflow with the reject option, we were able to increase
the savings to some extent, but not close to optimal. Nevertheless, the effectiveness of the abstention
model is highly dependent on the relative costs savings of these predictions [Metzger and Föcker,
2017]. A small deviation in the used costs per solution could already manifest the change in saved
costs.
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Workflow Costs (min) Savings (min)

Current 11, 759 N/A

ML 11, 128 631

ML + abstention model 10, 773 986

Optimal 6, 170 5, 589

Table 14: Costs and savings realized on the test set

8.4 Conclusion

In this chapter question, we aimed to explore how the best prediction ML model could be enhanced
with an abstention model. Firstly, we estimated the costs associated with performing checks on the
solutions. Subsequently, we designed the abstention model based on the properties of the used RFC,
and our desideratum for ML Interpretability. We chose an ambiguity rejector which was sequentially
learned when to abstain based on the highest predicted class probability. We optimized the rejection
thresholds to abstain based on the saved costs with a genetic algorithm. These thresholds were used
on the test set, whereafter we could compare the costs associated with the current workflow, the ML
model with and without model assertion, and the optimal workflow. The results showed that the
abstention model enhanced the ML prediction model in mainly two ways. Firstly, the abstention
model could defer from the ML prediction model to the current workflow such that there was no
time lost compared to this current workflow, which increased the saved costs by 56%. Next to this,
the abstention model increased the ulterior predictive performance of the ML prediction model. This
increase would be in both observed and stated predictive performance which increments the end-users’
trust. Utilizing this abstention model would require planners to more often use the current workflow,
but if the prediction is not rejected, it is significantly more often correct. Not to mention, the results
showed that the bias-epistemic uncertainty resulting in the bias towards the Unrestricted can be
reduced significantly with the use of this abstention model. On the other hand, the coverage for the
minority solutions dropped significantly, albeit these rejected predictions would mainly have resulted
in excessive costs. Still, we stress that the total net benefit of such an abstention model is highly
dependent on the estimated costs and the effectiveness of the ML prediction model.
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9 Conclusion
In this final chapter, we present the conclusions of this thesis. The conclusions on the main and
sub-research questions are discussed in Section 9.1. Then, in Section 9.2, we elaborate on the scientific
and business contribution, and recommendations for ASML. Finally, in Section 9.3, we outline the
limitations and suggest future research for this thesis.

9.1 Conclusions

In Section 1.8, we established the main research question for this thesis, which was divided into four
sub-research questions. In this section, we first address these sub-research questions and then provide
an answer to the main research question.

Sub-research question (1): How can Causal ML be used to predict the most effective
sourcing solution?

Conventional Causal ML models typically aim to estimate causal effects, but we justified
transforming this into a causal classification problem using policy learning and optimization. However,
this transformation encountered difficulties specific to Causal ML. Specifically in our case, this method
required synthetic control samples and raised a new class imbalance regarding the outcome variable.
Tests of various solutions for these problems showed predominantly poor predictive performance.
Besides potential bias sources that can come along with every predictive modelling task, some
algorithm and Causal Inference specific requirements and constraints could be the reason for this
poor performance. We suppose: 1) the unconfoundedness condition is critical for this method, 2)
causal effect estimators should be modelled and evaluated separately and in control of the developer
before the policy optimizer is learned, 3) the objective function of this policy optimizer should be
tailored to the research problem. This poor performance also degraded the appropriateness of using
this Causal ML for knowledge and causal discovery which ought to be one of the advantages of this
ML method.

Sub-research question (2): How do Causal ML models compare with traditional ML prediction
techniques when applied to predicting the most effective sourcing solution?

In this sub-research question, we compared the performance of Causal ML to that of traditional
ML models (RFC and AutoML), where the former was outperformed by the latter on the defined
performance metrics. We attribute this to the less accurate features identified as important by Causal
ML, and the ability of traditional ML to rely on associations in cases of unconfoundedness. The poor
performance together with the disengagement of using Causal ML for (causal) knowledge extraction,
results in our suggestion that Causal ML without instrumental variables should only be used if the
conditions on Causal Inference are strictly met. The decent performance of the traditional ML methods
also allowed us to use ML Interpretability practices for knowledge discovery.

Sub-research question (3): How can ML Interpretability methods be used for model validation
and improvement, and knowledge discovery?

To investigate the use of ML Interpretability in enabling valuable and deployable ML models for
operational decision-making in supply chain management, we aimed to explore its potential in this
domain. Next to this, such methods ought to be useful for model debugging to improve predictive
performance. We demonstrated how global ML Interpretability methods can be used to analyze and
interpret the modelled relationships such that they could be used for model validation and knowledge
discovery. In particular, SHAP, PDP, and ICE plots were found useful as they allow for a more
granular view and insightfulness. Accordingly, these methods uncovered that most of the features are
used to distinguish between the majority and minority solutions, and only a few among the minority
solutions. The use of global agnostic methods for model debugging resulted in a minor increase in
performance.
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Sub-research question (4): How can the best ML prediction model be enhanced with model
abstention?

With the belief that model abstentions can enhance the ML predictions model in terms of predictive
performance, we explored in this sub-research question how such abstention could be used in our case.
The results demonstrated a significant reduction in bias-epistemic uncertainty. Accordingly, the use of
an abstention model resulted in improved performance on the chosen metrics and a reduction in time
spent on the workflow with the base ML model, with a particularly notable improvement in Recall.
This increase in performance could enhance the planners’ trust in the system. Altogether, we argue
that this is a convenient way of dealing with a ML model’s deficiencies.

Main research question: How can causal and interpretable predictive analytics be used to
support ASML’s global operations center planners in choosing the most effective sourcing
solution within the emergency maintenance order sourcing process?

Even though in theory Causal ML would be the ultimate solution for predictive and prescriptive
analytics, the adaption and development of such a method should be done with care. The satisfaction of
the conditions could in practice be the first obstacle. For example, the unconfoundedness assumption,
which states that all confounding variables are observed, is in practice difficult to satisfy. For
example, we were limited to the data available on the stock and lead time per solution which in
practice are confounders. Moreover, practitioners should consider other aspects of the data, such
as representation and measurement accuracy. Accordingly, some variables that were expected to
be important (e.g., stock) were found to have low feature importance and predictive power due to
deficiencies in measurement, leading to bias and epistemic uncertainty in the model. Next to this, the
transformation of the business classification problem to a causal classification problem needed some
data preparation on the outcome sparsity which in our case was explored without a solid theoretical
foundation. Additionally, the choice or design of algorithms should be carefully considered. Literature
argued that the accuracy of causal effect estimators is not crucial for causal decision-making. However,
using pre-made functions limits one’s control, which in our case resulted in a lack of knowledge if our
causal effect estimators were accurate enough. Next to this, the objective of a policy optimizer should
be specific to the problem at hand. In our case, we prioritized the overall accuracy of the model over
our defined performance metrics, which may have resulted in a bias toward the majority solution.

Comparing Causal ML to traditional ML, the latter was performing significantly better on the
set performance metrics. As explained, this could be due to the predictive power of some non-causal
features such as criticality. The inclusion of AutoML in our study showed how it can compete with
manually developed ML models. With the limitations in mind, like scarce performance metrics, this
method is very convenient for developing models for the purpose of proof of concepts. Furthermore,
the predictive performance of traditional ML was more appropriate for knowledge discovery.

Regarding ML Interpretability, we observed that the utilized methods produced similar insights,
and their complementary use facilitated the summary and interpretation of the results before presenting
and verifying them with SMEs and stakeholders. Though, the more sophisticated methods were
too complex for non-ML practitioners to understand and a summarized version was needed for this
understanding. By way of contrast, the used global methods did not reveal any biases that could be
tackled for the purpose of model debugging. In fact, the main takeaway of the results from the MDOs
was that one should analyze the multicollinearity to improve your model’s generalizability and proper
model interpretation.

Lastly, concerning abstention models, we believe that such ML model assertions can definitely
enhance ML models. When the goal of predictive analytics is decision support rather than automation,
the sample coverage is not one of the main goals that should be considered. Though, regarding the
obtained EMO coverage for some solutions, one could argue that the total system does not meet the
usability requirements. However, the results showed that there were hardly any rejections that would
have resulted in cost savings.
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9.2 Scientific contribution and recommendations

The introduction of this thesis outlined the scientific and business significance of the study. In this
section, we detail the contributions of the research to both scientific and business fields and present
specific recommendations for ASML.

9.2.1 Scientific contribution

In general, we demonstrated how Big Data analytics can create value in supply chain management
processes, which contributes to the lacunae in empirical studies in this field [Frank et al., 2019].
In the realm of operational decision-making in after-sales service logistics, and especially for orders
that have already started, we have demonstrated how using predictive analytics can outperform the
current solutions based on (simple) business rules and expert knowledge reported by Topan et al.
(2020). Specifically on predictive analytics and its obstacles mentioned by Pearl (2019), we showed
that utilizing Causal ML methods is not a trivial task in practice. Some deterrents for this matter
are the complexity of the problem, data availability and quality. Moreover, the transformation from
conventional Causal ML to a classification problem is hardly studied. We came across several obstacles
and limitations of the currently available methods for this purpose, such as the objective function
misalignment with the problem objective. Next to this, research argues that there is still a long
road ahead for an effective design of AutoML solutions, where exploratory studies are needed for
this purpose to reveal the design and technical challenges and flaws [Elshawi et al., 2019, Karmaker
et al., 2021]. In this thesis, we demonstrated how this method can be used, and its limitations
regarding the to be optimized performance metrics and dealing with (high) class imbalance. Earlier,
we explained the lack of standard routines and processes on ML Interpretability [Molnar, 2020],
and the lacunae in knowledge on the utilization of such methods in operational decision-making in
our supply chain domain [Baryannis et al., 2019]. In this thesis, we demonstrated how global ML
Interpretability methods can be used complementarily for model validation and knowledge extraction.
Besides we contributed to the lacunae of ML abstention where we demonstrated how uncertainty
thresholds could be optimized with a genetic algorithm in a multi-class setting with dynamic costs, in
a low-stake, high-frequency decision-making problem.

Lessons learned:
In this thesis, we used an exploratory case study to contribute to the current lacunae in research and
business in the field of causal and interpretable predictive analytics. On the journey towards our end
results, there were some important lessons learned:

1. First of all, formulating, aggregating and labelling targets was not a trivial task. It required
a deeper understanding of the problem, but despite the valuable contributions of the SMEs,
estimations on the occurrence of each solution were rather hard to make. As a result, there
existed a high class imbalance and low sample size which could be avoided by different aggregation
levels and still maintaining the business value.

2. Regarding the chosen performance metrics, the combination of Precision and Recall with each a
different, at the time, not quantifiable importance per solution, made it challenging to optimize
hyper-parameters and compare different models. A better approach would be to quantify them
upfront, allowing for the creation of a scoring solution that can be optimized and interpreted
more easily.

3. As mentioned before, Causal ML should be utilized with care. As of yet, research still contains a
big lacuna in this discipline. The assumptions and conditions to be made and satisfied, made this
approach less convenient than expected. Besides, there is still a lack of frameworks, workflows,
pipelines, and best practices for the use of Causal ML, which made the study and deployment
of these algorithms in a classification study harder than expected.
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9.2.2 Business relevance and recommendations

From a business perspective, this thesis contributed mainly to two aspects. Firstly, we showed how
predictive analytics solutions can be used to support ASML’s GOC planners in choosing the most
effective sourcing solution within the emergency maintenance order sourcing process. We demonstrated
that this solution could remove redundant checks from the workflow and increase the performance on
the set SLAs to some moderate extent, which responds to our earlier defined problem statement. We
did this by using Causal and traditional ML methods, for which the latter showed to remove a fair
number of redundant checks. Besides, we used ML Interpretability methods to extract knowledge on
important determinants in this process. Looking forward, we demonstrated how abstention models
could be used to reject wrong predictions and enhance the planners’ trust. The second aspect regards
the set dream state, where we explored and demonstrated how ASML’s CSCM department could
become more data-driven, and accomplish this dream state.

Next to the contributions, we would like to recommend some actions on the prolongation of this
study.

1. The used data model and modelling skeleton could also be used for other problems. To start
with, the scope of the problem could be adjusted. For instance, the SOs with other priority
labels, which form about 60% of the SOs sourced by the GOC, could easily be included as well.
Next to this, different target labels like globally or regionally sourced could easily be used to
generate more insights. Together, this could increase the total benefit of the developed solution.

2. We also recommend using some of the insights gained with the ML Interpretability methods
to present and include in the onboarding of new planners. For instance, the knowledge of the
observed increase in the probability of the solution Conversion to be the most effective solution
on an EMO for the machine group HMI, could help planners to get faster to the most effective
solution.

3. Despite the presence of many unrepresentative Unrestricted solutions in our data, the majority
of EMOs are sourced from locations where the automated fulfillment algorithm should be used.
We recommend studying the root causes of the EMO not being sourced by these algorithms, in
an effort to reduce these EMOs being forwarded to the GOC.

4. As noted in Section 8.3, the observed potential savings are not close to optimal or substantial.
In order to increase these savings and make the exact solution worth deploying, the data to
algorithm bias should be tackled on the causes discussed in Section 5.3.

9.3 Limitations and future research

Firstly, the likelihood of unobserved confounders is one risk to the internal validity of our findings.
To assess the validity, a sensitivity analysis to identify the strength of the impacts of a confounder
required for our model to fundamentally change could be used. Presuming that is the case, extra
features, like stock for each solution, should be included in the data. Besides, the conclusions drawn
on Causal ML could be a second threat to internal validity as we only tested one method. Yet, causal
feature selection methods could be used to exclude non-causal features present in the current feature
set [Yu et al., 2021]. On the other hand, future research should examine the use of instrumental
variables, which mimic the behaviour of omitted confounding variables, in policy learning to overcome
the problem of unconfoundedness.

A second threat to the internal validity is the result of the chosen granularity of our solutions,
which resulted in small sample sizes for some solutions. Combined with the high class complexity, the
ML models found it difficult to distinguish between the solutions. Furthermore, due to these small
sample sizes, the results could in fact deviate from differently chosen random states of the model.
Similarly, the abstention model was trained on a relatively small validation set that was prone to
instability, as previously noted. Despite that the model’s behaviour was not that different compared
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to the test set, future research could study the effect of using more robust methods like CV for the
purpose of rejector learning. Next to this, the used data did not represent the real problem in scope
which make the results less reliable for the model performance in practice. With this in mind, better
filtering should be applied to diminish this limitation.

In this thesis, we primarily focused on the development of a ML prediction model. However, it is
important to also consider the implementation of this data analytics tool, which is often poorly done
by manufacturing companies [Frank et al., 2019]. Some aspects to investigate before implementing
are on the concept of model deployment like concept drift, and cross-cutting aspects like end users’
trust [Paleyes et al., 2022]. With the continuous changes in ASML’s supply chain, the learned models
are prone to concept drift, which is a phenomenon where the data underlying the model has changed
significantly resulting in degradation of model performance [Tsymbal, 2004]. Regarding the latter,
local ML Interpretability methods can be used complementary to global methods to enhance this
trust by explaining individual predictions [Carvalho et al., 2019]. It is worth noting that if such a
decision support tool were to be implemented and retrained after use to address issues such as concept
drift, the data could have become dirty due to the inclusion of solutions that were wrongly classified as
the most effective but used by the planner. This would result in contaminating the data with incorrect
information.

On the note of theoretical generalizability, known as transferability, we argue that this is two-sided.
On the one hand, the internal (quantitative) findings, like the specific insights on feature importances
are hardly generalizable, as they are too problem specific. However, on a more qualitative note,
the used methodologies and their results could definitely be used for other components in the order
fulfillment process of ASML, as also explained in the second recommendation. In a broader context,
the methodology could be used for studies on predictive and prescriptive process monitoring without
event logs, where the focus is rather on contextual features and less on the process. Yet, the adjustment
of the Causal ML application in our problem makes it less transferable to problems where no outcome
sparsity exists. The approach for model abstention that was used can be readily applied to other
domains and problems where the ML model provides inherent uncertainty measures. The main drivers
for developing an abstention model in these cases are cost savings, improved predictive performance,
and increased end-user trust.

A limitation of the used ML Interpretability methodology is the fact that the discovered
relationships cannot directly be interpreted as causal. Instead, Zhao and Hastie (2021) propose that
ML Interpretability methods like PDP can be used for causal interpretations if they are complemented
by a structural causal model and based on a ML prediction model with a good predictive performance.
Hence, this could be done in further research by ASML if they wish to interpret the modelled
relationships as causal. Another limitation and at the same time future research is on the use of
ML Interpretability methods to obtain the influence of two features together on the model. This
would allow us to discover more complicated relationships and uncover potential bias sources.

Due to the time constraint on this thesis, we focused on global ML Interpretability methods.
We presumed that the bias is mainly coming from the data to algorithm, which actually can be
debugged with local ML Interpretability methods [Krishnan and Wu, 2017,Zhang et al., 2019]. As for
abstention models, future research could study how novelty rejectors compare against our designed
ambiguity rejector. The last threat to internal validity is the high dependency of the costs savings on
the cost estimations of the checks.

As a final note, it is worth mentioning that the focus of this exploratory case study was relatively
broad, encompassing multiple topics. Although this allowed us to explore several fields and gain
knowledge on know-hows, it also resulted in less research depth on these topics. For example, we only
used one Causal ML model, which decreases the validity of the statements on Causal ML.
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Appendices

A Literature Review

Method Global vs Local Agnostic vs Specific Result

Local Surrogate Model (LIME) Local Model Agnostic Feature summary

BreakDown Local Model Agnostic Feature summary

Scoped Rules (Anchors) Local Model Agnostic Feature summary

Counterfactual Explanations Local Model Agnostic New Data point

Partial Dependence Plot (PDP) Global Model Agnostic Feature summary

Accumulated Local Effects (ALE) Plot Global Model Agnostic Feature summary

Feature Interaction Global Model Agnostic Feature summary

Functional Decomposition Global Model Agnostic Feature summary

Permutation Feature Importance Global Model Agnostic Feature summary

Global Surrogate Global Model Agnostic Feature summary

Influence Functions Both Model Agnostic Existent Data point

Prototypes and Criticisms Both Model Agnostic Existent Data point

Individual Condition Expectation (ICE) Both Model Agnostic Feature summary

Feature Importance Both Model Specific Feature summary

Shapley Values (SHAP) Both Model Agnostic Feature summary

Table 15: ML interpretability techniques

Causal and Interpretable Predictive Analytics in Operational Decision Making for Emergency
Maintenance Order Fulfillment: a Case Study at ASML
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Variable name Description Example Type

Activity_type Maintenance activity type ’Z86/Billable’ Categorical

Business_line Business line of machine ’HMI’ Categorical

Confirmation_method Confirtmation method of service order ’Semi Automated’ Categorical

Count_NORA_indicator_changes Number of changes in NORA indicator 3 Numerical

Criticality Criticality this week ’L3’ Categorical

Criticality_lw Criticality last week ’L3’ Categorical

Cross_plant_material_status Cross plant material status ’R2’ Categorical

Customer_name Name of customer ’Taiwan Semiconductor Manufacturing’ Categorical

Day_period_GOC_Entry Day period the EMO entered the GOC scope ’Early morning’ Categorical

Fillrate Fillrate 0.45 Numerical

Fillrate_points Fillrate points from criticality 3 Numerical

Gesa_scope If the order is in the GESA scope ’In Scope’ Categorical

GOC_Entry_weekday Weekday the EMO entered the GOC scope ’Monday Categorical

Goodwill_reason Goodwill reason for EMO creation ’PRIORITY LEAD-TIME’ Categorical

Highest_maintenance_activity_type Highest maintenance activity type ’Z86/Billable’ Categorical

Hold_in_local_warehouse If material is in stock in local warehouse ’No’ Boolean

Incoming_supply Amount of incoming supply 12 Numerical

Machine Down? If machine is down or not ’No’ Boolean

Machine_type_text Machine type ’NXE:3400C-S3PLUSMV’ Categorical

Manual_vs_automated If service order is confirmed manually or automatically ’Manual’ Categorical

Material_type Type of material ’SERP’ Categorical

NAV_points Not available points from criticality 1 Numerical

New_introduced If the material was newly introduced 1 Numerical

NORA_indicator If in NORA scope or not ’Y’ Categorical

Order_supplychain_flow Type of supply chain flow ’After-sales’ Categorical

Planning_level Planning level of service order LPA’ Categorical

Profit_center Profit center of machine ’EUV’ Categorical

Requesting_Region Requesting region ’EMEA’ Categorical

SCP_2 Standard cost price 245.12 Numerical

Service_order_type Service order type ’ZS01’ Categorical

Solution Sourcing solution ’Conversion’ Categorical

Special_parts_planner If it is a special planned pat ’GOC special planned’ Categorical

Stock Unrestricted stock for material 3 Numerical

Target WW stock target of material 6 Numerical

Time_to_UND_SO Time to UND at SO creation in hours 45 Numerical

Total_criticality_points Total number of criticality points 22 Numerical

Total_forecast Total WW forecast of material 12 Numerical

Total_NB_orders Total outstanding new buy orders 34 Numerical

Upgraded If the SO is upgraded with higher priority 1 Numerical

Table 17: Features in final data set
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C Causal Machine Learning

C.1 Sample distribution

Total Samples
Samples per solution Samples per outcome

0 1 2 3 5 4 6 -3 -2 -1 0 1

M1-O 53250 26625 22658 1693 1041 665 455 113 - - - 26625 26625

M1-U 21268 10634 6667 1693 1041 665 455 113 - - - 10634 10634

M1-C 80004 40002 6667 6667 6667 6667 6667 6667 - - - 40002 40002

M2 159750 - 26625 26625 26625 26625 26625 26625 - - - 133125 26625

M3 159750 - 26625 26625 26625 26625 26625 26625 52472 51754 28899 - 26625

Table 18: Samples per solution and outcome variable

C.2 Confusion matrices Causal ML

True label

Unrestricted Semi restricted Conversion DSP Restricted Repair

Predicted

Label

Unrestricted 7055 377 146 63 157 19

Semi restricted 167 127 6 2 18 0

Conversion 161 1 208 0 3 0

DSP 44 4 7 48 2 2

Restricted 92 46 9 6 49 0

Repair 20 1 8 14 1 13

Table 19: Confusion matrix M1-O

True label

Unrestricted Semi restricted Conversion DSP Restricted Repair

Predicted

Label

Unrestricted 4821 126 55 38 57 9

Semi restricted 1753 373 19 7 95 1

Conversion 536 3 261 1 7 1

DSP 173 9 23 76 5 14

Restricted 233 44 22 8 65 0

Repair 23 1 4 3 1 9

Table 20: Confusion matrix M1-U
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True label

Unrestricted Semi restricted Conversion DSP Restricted Repair

Predicted

Label

Unrestricted 4509 115 46 37 49 11

Semi restricted 1795 374 20 12 89 1

Conversion 504 16 276 2 6 3

DSP 151 5 11 65 3 5

Restricted 470 43 22 4 80 0

Repair 110 3 9 13 3 14

Table 21: Confusion matrix M1-C

True label

Unrestricted Semi restricted Conversion DSP Restricted Repair

Predicted

Label

Unrestricted 7527 541 281 119 222 29

Semi restricted 0 15 0 0 0 0

Conversion 8 0 103 0 2 0

DSP 3 0 0 14 0 3

Restricted 1 0 0 0 6 0

Repair 0 0 0 0 0 2

Table 22: Confusion matrix M2

True label

Unrestricted Semi restricted Conversion DSP Restricted Repair

Predicted

Label

Unrestricted 7533 547 338 128 230 34

Semi restricted 0 9 0 0 0 0

Conversion 3 0 46 0 0 0

DSP 3 0 0 5 0 0

Restricted 0 0 0 0 0 0

Repair 0 0 0 0 0 0

Table 23: Confusion matrix M3
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D Traditional Machine Learning

D.1 Hyper-parameters RQ2

Metric

Accuracy

AUC_weighted

Average_precision_score_weighted

Norm_macro_recall

Precision_score_weighted

Table 24: Performance metrics Azure AutoML

Azure AutoML algorithms

Logistic Regression

Light GBM

Gradient Boosting

Decision Tree

K Nearest Neighbors

Linear SVC

Support Vector Classification (SVC)

Random Forest

Extremely Randomized Trees

Xgboost

Naïve Bayes

Stochastic Gradient Search

Table 25: Azure AutoML algorithms

D.2 Results Traditional ML

True label

Unrestricted Semi restricted Conversion DSP Restricted Repair

Predicted

Label

Unrestricted 7458 440 158 82 193 25

Semi restricted 23 111 0 2 12 1

Conversion 32 2 222 0 2 0

DSP 16 1 4 48 1 4

Restricted 9 2 0 1 22 0

Repair 1 0 0 0 0 4

Table 26: Confusion matrix RFC-O
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True label

Unrestricted Semi restricted Conversion DSP Restricted Repair

Predicted

Label

Unrestricted 7220 335 111 60 141 19

Semi restricted 170 205 8 5 40 0

Conversion 87 4 257 3 5 1

DSP 34 3 6 61 3 8

Restricted 28 9 1 4 41 0

Repair 0 0 1 0 0 6

Table 27: Confusion matrix RFC-U

True label

Unrestricted Semi restricted Conversion DSP Restricted Repair

Predicted

Label

Unrestricted 7052 303 99 54 137 19

Semi restricted 289 235 12 9 44 0

Conversion 115 3 262 3 5 1

DSP 42 4 6 63 3 8

Restricted 41 11 5 4 41 0

Repair 0 0 0 0 0 6

Table 28: Confusion matrix RFC-C

True label

Unrestricted Semi restricted Conversion DSP Restricted Repair

Predicted

Label

Unrestricted 7080 380 149 62 153 19

Semi restricted 154 115 3 2 20 0

Conversion 154 1 206 0 3 0

DSP 39 3 6 47 2 2

Restricted 91 56 13 7 51 0

Repair 21 1 7 15 1 13

Table 29: Confusion matrix DRRFPL
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True label

Unrestricted Semi restricted Conversion DSP Restricted Repair

Predicted

Label

Unrestricted 7411 405 137 77 177 21

Semi restricted 54 143 2 3 15 2

Conversion 43 2 240 1 5 1

DSP 19 1 4 49 2 5

Restricted 12 5 1 3 31 0

Repair 0 0 0 0 0 5

Table 30: Confusion matrix AutoML

E Machine Learning Interpretability

E.1 Feature importance summary

Feature MDI PIMP SHAP

Confirmation_method_Manually Confirmed 2 2 8

Count_NORA_indicator_changes 4 5 6

Criticality_lw_A 1

Criticality_lw_Not Critical 4

Fillrate 6 7 3

GOC_Entry_time_to_und 10 10 10

Machine_group_HMI 3 3 7

Material_type_SERT 1 1 9

SCP_2 9 9 5

Stock 8 8 2

Total Forecast 5 6

Total NB orders 7 4

Table 31: Summary feature importances. Note: "10" is the highest feature importance of that
method, "1" the lowest, and empty not present, colors are used only for visual interpretation ease.
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E.2 ML interpretability plots
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Figure 21: SHAP beeswarm summary plots
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Figure 22: PDP plots: part 1
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Figure 23: PDP plots: part 2
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Figure 24: ICE plots: part 1
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Figure 25: ICE plots: part 2
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E.3 Error analysis
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(b) Error box plot Count_NORA_indicator_changes
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Figure 26: Error analysis examples

E.4 Model validation and knowledge discovery interviews

Feature Min-max value Unrestricted Semi-restricted Conversion DSP Restricted Repair

GOC_ENTRY_time to_und 0-1000

Machine_group_HMI False-True

Count_NORA_indicator_changes 0-10 

SCP_2 0-30000

Fillrate 0-1.5

Confirmation_method_manually False-True

Stock 0-100 

Criticality lw not critical False-True

Criticality lw = A False-True

Total NB orders 0-50 #VALUE! #VALUE!

Material_type_SERT False-True

Total_forecast 0-60 #VALUE! #VALUE!

Figure 27: Feature importance summary designed with and for SMEs. An arrow up, sideways, and
down means relatively high positive impact, no/small impact, high negative impact on the predicted
probability of the solution
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Feature Review

GOC_Entry_ time_to_undThe difference between the PDPs showed that all the probability of an EMO being
sourced from a solution other than Unrestricted increases, and from Unrestricted
decreases. This makes sense as unrestricted stock can be sourced immediately, while
a repair would take more time and thus is only possible if there is more time left to
the UND.

Machine_group
_HMI

The solution Conversion showed to have an increased probability of being the most
effective solution if the EMO belongs to the machine group HMI. This makes sense
since materials from this group are less often stored on Unrestricted stock locations.

SCP_2 This feature seemed to be mainly important for materials with a very high price. For
Semi-restricted, Conversion, Restricted, and Repair, an increase of probability can be
seen, while for Unrestricted this decreases, and for DSP it is unstable. Except from
DSP, this makes sense as exceptional expensive materials are scarce and are often
not stored on Unrestricted storage locations from which can be easily sourced.

Stock As expected, the probability of Unrestricted being the solution increases when
there is more stock available, as this feature mainly represents the storage locations
belonging to this solution. Comparing the other solutions, it can be observed that
they all follow a really steep slope except from Semi-restricted. The other solutions
become redundant if there is normal stock available, but the Semi-restricted stock
can some times be more effective if the lead time is better.

Fillrate When the fillrate goes up, the probability of the solution Unrestricted goes up as
well. This is in line with the feature stock which is one of the factors that determine
the fillrate. Hence, no unexpected behavior was observed

Confirmation_ method
_Manually_confirmed

By looking at the PDPs and SHAP beeswarm plots, it becomes clear that the
probability of all other solutions than Unrestricted being the most effective solution
increase and for Unrestricted itself decreases. This makes sense because the moment
a SO got manually confirmed at the order creation, it will automatically be sent
to manual planners. This often happens when there are is no Unrestricted stock
available.

Criticality Among the different criticality levels, the highest level "A" and the lowest level "Not
critical", showed to be important. Where the former decreases the probability of
the solution Unrestricted, it increases the probability for the other solutions. This
makes sense since criticality increases if it is expected that materials are not directly
sourceable from Unrestricted locations.

Material_type
_SERT

The PDPs of this feature showed that the probability of the solutions
Semi-restricted and Restricted increased if the material is a SERT, while the opposite
goes for the other solutions. This makes sense as SERT materials more often are
stored on (Semi-)Restricted storage locations where they are for example held by a
local, cleaned, or inspected.

Count_NORA_ indicator_changesAs expected, the probability of Unrestricted being the solution decreases when there
are more NORA indicator changes, while the opposite holds for the other solutions.
A high number in changes shows that the order is sent back and forth to and by
systems and planners, which indicates it is hard to find a effective solution.

Total_NB_orders This features showed some instabilities as well which are probably caused by the
distribution of the feature’s values. This feature showed to be very important for the
solution DSP, and has an increased probability of being the most effective solution
when this value is high. This makes sense because when there are more outstanding
New Buy orders at the suppliers, there are more options to source from DSP, which
could at the end be a most effective solution.

Table 32: ML interpretability interview results
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E.5 Evaluation of ML Interpretability methods

Method Accuracy Understandability Efficiency

MDI Moderate Very high Very high

PIMP Moderate Moderate-high Moderate-high

SHAP summary plot Moderate Very high Moderate

SHAP beeswarm plot Moderate-high Moderate-high Moderate

PDP Moderate-high Moderate-high Moderate

ICE Moderate-high Moderate-high Moderate

Table 33: Evaluation of the ML interpretability methods on the goals defined by [Carvalho et al.,
2019]

F Model Abstention

F.1 Cost estimations

Unrestricted Semi-restricted Conversion DSP Repair Restricted

Check 1 5 5 5 5 5 5

Check 2 3 3 3 3 3 3

Check 3 2

Check 4 4 4 4 4 4

Check 5 2

Check 6 2 2

Check 7 6

Table 34: Cost estimations in minutes per check performed per solution. The redundant checks are
marked blue.
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F.2 Uncertainty analysis
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(d) DSP
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Figure 28: (Un)Certainty of the ML model when (mis)predicting on the predicted solution per
True solution
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