6 research outputs found

    Division Cryptanalysis of Block Ciphers with a Binary Diffusion Layer

    Get PDF
    In this paper, we propose an accurate security evaluation methodology for block ciphers with a binary diffusion layers against division cryptanalysis. We illustrate the division property by the independence of variables, and exploit a one-to-one mapping between division trails and invertible sub-matrices. We give a new way to model the propagation of division property of linear diffusion layers by the smallest amount of inequalities which are generated from linear combinations of row vectors of the diffusion matrix. The solutions of these inequalities are exactly the division trails of linear transformation. Hence the description is compact and optimal. As applications of our methodology, we first present a 10-round integral distinguisher for Skinny, proposed at CRYPTO 2016 which is of one round more than that found by using the previous method. For Midori, proposed at ASIACRYPT 2015, the designers have obtained a 3.5-round integral characteristic. Surprisingly, we find 7-round integral distinguishers both for Midori64 and Midori128. Most importantly, we obtain the longest integral distinguishers for block ciphers with a binary diffusion layer. It seems that any more improvement of this kind of integral distinguishers using the division property is impossible. Therefore, the technique can be used to prove security against division cryptanalysis, and we can hopefully expect it to become a useful technique for designers

    MILP Modeling for (Large) S-boxes to Optimize Probability of Differential Characteristics

    Get PDF
    Current Mixed Integer Linear Programming (MILP)-based search against symmetric-key primitives with 8-bit S-boxes can only build word-wise model to search for truncated differential characteristics. In such a model, the properties of the Differential Distribution Table (DDT) are not considered. To take these properties into account, a bit-wise model is necessary, which can be generated by the H-representation of the convex hull or the logical condition modeling. However, the complexity of both approaches becomes impractical when the size of the S-box exceeds 5 bits. In this paper, we propose a new modeling for large (8-bit or more) S-boxes. In particular, we first propose an algorithm to generate a bit-wise model of the DDT for large S-boxes. We observe that the problem of generating constraints in logical condition modeling can be converted into the problem of minimizing the product-of-sum of Boolean functions, which is a well-studied problem. Hence, classical off-the-shelf solutions such as the Quine-McCluskey algorithm or the Espresso algorithm can be utilized, which makes building a bit-wise model, for 8-bit or larger S-boxes, practical. Then this model is further extended to search for the best differential characteristic by considering the probabilities of each propagation in the DDT, which is a much harder problem than searching for the lower bound on the number of active S-boxes. Our idea is to separate the DDT into multiple tables for each probability and add conditional constraints to control the behavior of these multiple tables. The proposed modeling is first applied to SKINNY-128 to find that there is no differential characteristic having probability higher than 2−128 for 14 rounds, while the designers originally expected that 15 rounds were required. We also applied the proposed modeling to two, arbitrarily selected, constructions of the seven AES round function based constructions proposed in FSE 2016 and managed to improve the lower bound on the number of the active S-boxes in one construction and the upper bound on the differential characteristic for the other

    Zero-Correlation Attacks on Tweakable Block Ciphers with Linear Tweakey Expansion

    Get PDF
    The design and analysis of dedicated tweakable block ciphers is a quite recent and very active research field that provides an ongoing stream of new insights. For instance, results of Kranz, Leander, and Wiemer from FSE 2017 show that the addition of a tweak using a linear tweak schedule does not introduce new linear characteristics. In this paper, we consider – to the best of our knowledge – for the first time the effect of the tweak on zero-correlation linear cryptanalysis for ciphers that have a linear tweak schedule. It turns out that the tweak can often be used to get zero-correlation linear hulls covering more rounds compared to just searching zero-correlation linear hulls on the data-path of a cipher. Moreover, this also implies the existence of integral distinguishers on the same number of rounds. We have applied our technique on round reduced versions of Qarma, Mantis, and Skinny. As a result, we can present – to the best of our knowledge – the best attack (with respect to number of rounds) on a round-reduced variant of Qarma

    Forkcipher: a New Primitive for Authenticated Encryption of Very Short Messages

    Get PDF
    Highly efficient encryption and authentication of short messages is an essential requirement for enabling security in constrained scenarios such as the CAN FD in automotive systems (max. message size 64 bytes), massive IoT, critical communication domains of 5G, and Narrowband IoT, to mention a few. In addition, one of the NIST lightweight cryptography project requirements is that AEAD schemes shall be “optimized to be efficient for short messages (e.g., as short as 8 bytes)”. In this work we introduce and formalize a novel primitive in symmetric cryptography called a forkcipher. A forkcipher is a keyed function expanding a fixed-length input to a fixed-length output. We define its security as indistinguishability under chosen ciphertext attack. We give a generic construction validation via the new iterate-fork-iterate design paradigm. We then propose ForkSkinny as a concrete forkcipher instance with a public tweak and based on SKINNY: a tweakable lightweight block cipher constructed using the TWEAKEY framework. We conduct extensive cryptanalysis of ForkSkinny against classical and structure-specific attacks. We demonstrate the applicability of forkciphers by designing three new provably-secure, nonce-based AEAD modes which offer performance and security tradeoffs and are optimized for efficiency of very short messages. Considering a reference block size of 16 bytes, and ignoring possible hardware optimizations, our new AEAD schemes beat the best SKINNY-based AEAD modes. More generally, we show forkciphers are suited for lightweight applications dealing with predominantly short messages, while at the same time allowing handling arbitrary messages sizes. Furthermore, our hardware implementation results show that when we exploit the inherent parallelism of ForkSkinny we achieve the best performance when directly compared with the most efficient mode instantiated with the SKINNY block cipher

    Forkcipher: A New Primitive for Authenticated Encryption of Very Short Messages

    Get PDF
    This is an extended version of the article with the same title accepted at Asiacrypt 2019.International audienceHighly efficient encryption and authentication of short messages is an essential requirement for enabling security in constrained scenarios such as the CAN FD in automotive systems (max. message size 64 bytes), massive IoT, critical communication domains of 5G, and Narrowband IoT, to mention a few. In addition, one of the NIST lightweight cryptography project requirements is that AEAD schemes shall be “optimized to be efficient for short messages (e.g., as short as 8 bytes)”. In this work we introduce and formalize a novel primitive in symmetric cryptography called a forkcipher. A forkcipher is a keyed function expanding a fixed-length input to a fixed-length output. We define its security as indistinguishability under chosen ciphertext attack. We give a generic construction validation via the new iterate-fork-iterate design paradigm. We then propose ForkSkinny as a concrete forkcipher instance with a public tweak and based on SKINNY: a tweakable lightweight block cipher constructed using the TWEAKEY framework. We conduct extensive cryptanalysis of ForkSkinny against classical and structure-specific attacks. We demonstrate the applicability of forkciphers by designing three new provably-secure, nonce-based AEAD modes which offer performance and security tradeoffs and are optimized for efficiency of very short messages. Considering a reference block size of 16 bytes, and ignoring possible hardware optimizations, our new AEAD schemes beat the best SKINNY-based AEAD modes. More generally, we show forkciphers are suited for lightweight applications dealing with predominantly short messages, while at the same time allowing handling arbitrary messages sizes. Furthermore, our hardware implementation results show that when we exploit the inherent parallelism of ForkSkinny we achieve the best performance when directly compared with the most efficient mode instantiated with the SKINNY block cipher

    Division cryptanalysis of block ciphers with a binary diffusion layer

    No full text
    © The Institution of Engineering and Technology 2018 In this study, the authors propose an accurate approach to model the propagation of the division property of linear layers by the smallest amount of inequalities. The solutions of the inequalities are exactly the division trails of a linear transformation. Therefore, the description is compact and optimal. As applications of their results, they present a 7-round integral distinguisher for both Midori64 and Midori128. The designers of Midori only obtained a 3.5-round integral characteristic. For Skinny64, they find a 10-round integral distinguisher which was previously found by the designers. It is well to remind that their result proves that 7 rounds and 10 rounds are the upper bounds of Midori and Skinny64 correspondingly when searching for integral distinguishers based on division property. The significance of their result lies in that they shed light on how far division cryptanalysis can influence the security analysis of block ciphers with a binary diffusion layer, and their technique can be used to prove security against division cryptanalysis.status: publishe
    corecore