955 research outputs found

    Minimum d-dimensional arrangement with fixed points

    Full text link
    In the Minimum dd-Dimensional Arrangement Problem (d-dimAP) we are given a graph with edge weights, and the goal is to find a 1-1 map of the vertices into Zd\mathbb{Z}^d (for some fixed dimension d1d\geq 1) minimizing the total weighted stretch of the edges. This problem arises in VLSI placement and chip design. Motivated by these applications, we consider a generalization of d-dimAP, where the positions of some of the vertices (pins) is fixed and specified as part of the input. We are asked to extend this partial map to a map of all the vertices, again minimizing the weighted stretch of edges. This generalization, which we refer to as d-dimAP+, arises naturally in these application domains (since it can capture blocked-off parts of the board, or the requirement of power-carrying pins to be in certain locations, etc.). Perhaps surprisingly, very little is known about this problem from an approximation viewpoint. For dimension d=2d=2, we obtain an O(k1/2logn)O(k^{1/2} \cdot \log n)-approximation algorithm, based on a strengthening of the spreading-metric LP for 2-dimAP. The integrality gap for this LP is shown to be Ω(k1/4)\Omega(k^{1/4}). We also show that it is NP-hard to approximate 2-dimAP+ within a factor better than \Omega(k^{1/4-\eps}). We also consider a (conceptually harder, but practically even more interesting) variant of 2-dimAP+, where the target space is the grid Zn×Zn\mathbb{Z}_{\sqrt{n}} \times \mathbb{Z}_{\sqrt{n}}, instead of the entire integer lattice Z2\mathbb{Z}^2. For this problem, we obtain a O(klog2n)O(k \cdot \log^2{n})-approximation using the same LP relaxation. We complement this upper bound by showing an integrality gap of Ω(k1/2)\Omega(k^{1/2}), and an \Omega(k^{1/2-\eps})-inapproximability result. Our results naturally extend to the case of arbitrary fixed target dimension d1d\geq 1

    Convex Relaxations for Permutation Problems

    Full text link
    Seriation seeks to reconstruct a linear order between variables using unsorted, pairwise similarity information. It has direct applications in archeology and shotgun gene sequencing for example. We write seriation as an optimization problem by proving the equivalence between the seriation and combinatorial 2-SUM problems on similarity matrices (2-SUM is a quadratic minimization problem over permutations). The seriation problem can be solved exactly by a spectral algorithm in the noiseless case and we derive several convex relaxations for 2-SUM to improve the robustness of seriation solutions in noisy settings. These convex relaxations also allow us to impose structural constraints on the solution, hence solve semi-supervised seriation problems. We derive new approximation bounds for some of these relaxations and present numerical experiments on archeological data, Markov chains and DNA assembly from shotgun gene sequencing data.Comment: Final journal version, a few typos and references fixe

    Vertex Sparsifiers: New Results from Old Techniques

    Get PDF
    Given a capacitated graph G=(V,E)G = (V,E) and a set of terminals KVK \subseteq V, how should we produce a graph HH only on the terminals KK so that every (multicommodity) flow between the terminals in GG could be supported in HH with low congestion, and vice versa? (Such a graph HH is called a flow-sparsifier for GG.) What if we want HH to be a "simple" graph? What if we allow HH to be a convex combination of simple graphs? Improving on results of Moitra [FOCS 2009] and Leighton and Moitra [STOC 2010], we give efficient algorithms for constructing: (a) a flow-sparsifier HH that maintains congestion up to a factor of O(logk/loglogk)O(\log k/\log \log k), where k=Kk = |K|, (b) a convex combination of trees over the terminals KK that maintains congestion up to a factor of O(logk)O(\log k), and (c) for a planar graph GG, a convex combination of planar graphs that maintains congestion up to a constant factor. This requires us to give a new algorithm for the 0-extension problem, the first one in which the preimages of each terminal are connected in GG. Moreover, this result extends to minor-closed families of graphs. Our improved bounds immediately imply improved approximation guarantees for several terminal-based cut and ordering problems.Comment: An extended abstract appears in the 13th International Workshop on Approximation Algorithms for Combinatorial Optimization Problems (APPROX), 2010. Final version to appear in SIAM J. Computin

    Multi Layer Peeling for Linear Arrangement and Hierarchical Clustering

    Get PDF
    We present a new multi-layer peeling technique to cluster points in a metric space. A well-known non-parametric objective is to embed the metric space into a simpler structured metric space such as a line (i.e., Linear Arrangement) or a binary tree (i.e., Hierarchical Clustering). Points which are close in the metric space should be mapped to close points/leaves in the line/tree; similarly, points which are far in the metric space should be far in the line or on the tree. In particular we consider the Maximum Linear Arrangement problem [Refael Hassin and Shlomi Rubinstein, 2001] and the Maximum Hierarchical Clustering problem [Vincent Cohen-Addad et al., 2018] applied to metrics. We design approximation schemes (1-? approximation for any constant ? > 0) for these objectives. In particular this shows that by considering metrics one may significantly improve former approximations (0.5 for Max Linear Arrangement and 0.74 for Max Hierarchical Clustering). Our main technique, which is called multi-layer peeling, consists of recursively peeling off points which are far from the "core" of the metric space. The recursion ends once the core becomes a sufficiently densely weighted metric space (i.e. the average distance is at least a constant times the diameter) or once it becomes negligible with respect to its inner contribution to the objective. Interestingly, the algorithm in the Linear Arrangement case is much more involved than that in the Hierarchical Clustering case, and uses a significantly more delicate peeling

    Doctor of Philosophy

    Get PDF
    dissertationDeep Neural Networks (DNNs) are the state-of-art solution in a growing number of tasks including computer vision, speech recognition, and genomics. However, DNNs are computationally expensive as they are carefully trained to extract and abstract features from raw data using multiple layers of neurons with millions of parameters. In this dissertation, we primarily focus on inference, e.g., using a DNN to classify an input image. This is an operation that will be repeatedly performed on billions of devices in the datacenter, in self-driving cars, in drones, etc. We observe that DNNs spend a vast majority of their runtime to runtime performing matrix-by-vector multiplications (MVM). MVMs have two major bottlenecks: fetching the matrix and performing sum-of-product operations. To address these bottlenecks, we use in-situ computing, where the matrix is stored in programmable resistor arrays, called crossbars, and sum-of-product operations are performed using analog computing. In this dissertation, we propose two hardware units, ISAAC and Newton.In ISAAC, we show that in-situ computing designs can outperform DNN digital accelerators, if they leverage pipelining, smart encodings, and can distribute a computation in time and space, within crossbars, and across crossbars. In the ISAAC design, roughly half the chip area/power can be attributed to the analog-to-digital conversion (ADC), i.e., it remains the key design challenge in mixed-signal accelerators for deep networks. In spite of the ADC bottleneck, ISAAC is able to out-perform the computational efficiency of the state-of-the-art design (DaDianNao) by 8x. In Newton, we take advantage of a number of techniques to address ADC inefficiency. These techniques exploit matrix transformations, heterogeneity, and smart mapping of computation to the analog substrate. We show that Newton can increase the efficiency of in-situ computing by an additional 2x. Finally, we show that in-situ computing, unfortunately, cannot be easily adapted to handle training of deep networks, i.e., it is only suitable for inference of already-trained networks. By improving the efficiency of DNN inference with ISAAC and Newton, we move closer to low-cost deep learning that in turn will have societal impact through self-driving cars, assistive systems for the disabled, and precision medicine
    corecore