
Multi Layer Peeling for Linear Arrangement and
Hierarchical Clustering
Yossi Azar #

School of Computer Science, Tel-Aviv University, Israel

Danny Vainstein #

School of Computer Science, Tel-Aviv University, Israel

Abstract
We present a new multi-layer peeling technique to cluster points in a metric space. A well-known
non-parametric objective is to embed the metric space into a simpler structured metric space such
as a line (i.e., Linear Arrangement) or a binary tree (i.e., Hierarchical Clustering). Points which
are close in the metric space should be mapped to close points/leaves in the line/tree; similarly,
points which are far in the metric space should be far in the line or on the tree. In particular we
consider the Maximum Linear Arrangement problem [20] and the Maximum Hierarchical Clustering
problem [12] applied to metrics.

We design approximation schemes (1 − ϵ approximation for any constant ϵ > 0) for these
objectives. In particular this shows that by considering metrics one may significantly improve former
approximations (0.5 for Max Linear Arrangement and 0.74 for Max Hierarchical Clustering). Our
main technique, which is called multi-layer peeling, consists of recursively peeling off points which
are far from the “core” of the metric space. The recursion ends once the core becomes a sufficiently
densely weighted metric space (i.e. the average distance is at least a constant times the diameter)
or once it becomes negligible with respect to its inner contribution to the objective. Interestingly,
the algorithm in the Linear Arrangement case is much more involved than that in the Hierarchical
Clustering case, and uses a significantly more delicate peeling.

2012 ACM Subject Classification Theory of computation → Approximation algorithms analysis

Keywords and phrases Hierarchical clustering, Linear arrangements, Metric embeddings

Digital Object Identifier 10.4230/LIPIcs.ICALP.2023.13

Category Track A: Algorithms, Complexity and Games

Related Version Full Version: https://arxiv.org/abs/2305.01367

Funding Yossi Azar : Research supported in part by the Israel Science Foundation (grant No.
2304/20).

1 Introduction

Unsupervised learning plays a major role in the field of machine learning. Arguably the most
prominent type of unsupervised learning is done through clustering. Abstractly, in this setting
we are given a set of data points with some notion of pairwise relations which is captured
via a metric space (such that closer points are more similar). In order to better understand
the data, the goal is to embed this space into a simpler structured space while preserving the
original pairwise relationships. A prevalent solution in this domain is to build a flat clustering
(or partition) of the data (e.g., by using the k-means algorithm). However, these types of
solutions ultimately fail to capture all pairwise relations (e.g., intra-cluster relations). To
overcome this difficulty, often the metric space is mapped to structures that may capture all
pairwise relations - in our case into a Linear Arrangement (LA) or a Hierarchical Clustering
(HC).

EA
T

C
S

© Yossi Azar and Danny Vainstein;
licensed under Creative Commons License CC-BY 4.0

50th International Colloquium on Automata, Languages, and Programming (ICALP 2023).
Editors: Kousha Etessami, Uriel Feige, and Gabriele Puppis; Article No. 13; pp. 13:1–13:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:azar@tau.ac.il
mailto:dannyvainstein@gmail.com
https://doi.org/10.4230/LIPIcs.ICALP.2023.13
https://arxiv.org/abs/2305.01367
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

13:2 Multi Layer Peeling for LA and HC

The idea of embedding spaces by using a Linear Arrangement or Hierarchical Clustering
structure is not new. These types of solutions have been extensively used in practice (e.g.,
see [11, 30, 5, 6, 26]) and have also been extensively researched from a theoretical point of
view (e.g., see [13, 12, 24, 10, 17, 20]). Notably, the Linear Arrangement type objectives were
first considered by Hansen [19] who considered the embedding of graphs into 2-dimensional
and higher planes. On the other hand, the study of Hierarchical Clustering type objectives
was initiated by Dasgupta [13] - spurring a fruitful line of work resulting in many novel
algorithms. In practice, more often than not, the data considered adheres to the triangle
inequality (in particular guaranteeing that if point a is similar, equivalently close, to points b

and c then so are b and c) and thus may be captured by a metric (e.g., see [9, 25, 26]).
The first objective we consider is the Max Linear Arrangement objective.

▶ Definition 1. Let G = (V, w) denote a metric (specifically, w satisfies the triangle inequality)
with |V | = n. In the Max Linear Arrangement problem our goal is to return a 1-1
mapping y : V → [n] so as to maximize

∑
i,j wi,jyi,j, where yi,j = |yi − yj |.

The second objective we consider is the Max Hierarchical Clustering objective.

▶ Definition 2. Let G = (V, w) denote a metric (specifically, w satisfies the triangle in-
equality). In the Max Hierarchical Clustering problem our goal is to return a binary
HC tree T such that its leaves are in a 1-1 correspondence with V . Furthermore, we would
like to return T so as to maximize

∑
i,j wi,j |Ti,j |, where Tij is the subtree rooted at the

lowest-common-ancestor of the leaves i and j in the Hierarchical Clustering tree T and |Ti,j |
is the number of leaves in Ti,j.

These objectives were first considered by Hassin and Rubinstein [20] and Cohen-Addad et
al. [12] (respectively) with respect to the non-metric case. For these (non-metric) objectives
the best known approximation ratios are 0.5 for the Linear Arrangement objective [20] and
0.74 for the Hierarchical Clustering objective [25]). The former was achieved by was achieved
by bisecting the data points randomly and thereafter greedily arranging each set and the
latter was achieved by approximating the Balanced Max-2-SAT problem.

As stated earlier, more often than not, the data considered in practical applications
adheres to the triangle inequality. Therefore, our results’ merits are two fold. First, we offer
a generalized framework to tackle these types of embedding objectives. Second, our results
show that by applying this natural assumption we may significantly improve former best
known approximations (from 0.5 (LA) and 0.74 (HC) to 1 − ϵ for any constant ϵ > 0).

Our Results

We provide the following results.
We design a general framework in order to tackle the embedding of metric spaces into
simpler structured spaces (see Algorithm 1). We then concretely apply our framework
to both the Linear Arrangement and Hierarchical Clustering settings. For an extended
discussion see Our Techniques.
We apply our framework to the Linear Arrangement case. In this case we prove that
our applied algorithm (2) is an EPRAS (see Definition 8) - i.e., for any constant ϵ > 0 it
yields a 1 − ϵ approximation.
We apply our framework to the Hierarchical Clustering case. In this case we prove that
our applied algorithm (4) is an EPRAS (see Definition 8) - i.e., for any constant ϵ > 0 it
yields a 1 − ϵ approximation.

Y. Azar and D. Vainstein 13:3

Our Techniques

Our generic multi-layer peeling approach appears in Algorithm 1. We begin by checking
whether the metric space is sufficiently densely weighted (i.e., whether the average distance
is at least a constant times the diameter, or equivalently the metric’s weighted density (see
Definition 3) is constant). If this is the case then we apply a specific algorithm that handles
such instances. In the LA case we devise our own algorithm (see Algorithm 3). Algorithm 3
leverages the General Graph Partitioning algorithm of Goldreich et al. [18] in order to “guess”
an optimal graph partition that induces an almost optimal linear arrangement. In the HC
case we leverage the work of Vainstein et al. [31].

If, however, the metric is not sufficiently densely weighted, then we observe that it
must contain a core - a subset of nodes containing almost all data points with a diameter
significantly smaller than the original metric’s. Our general algorithm then peels off data
points far from the core (in the LA setting) or not in the core (in the HC setting). We then
embed these peeled off points; by placing them on one of the extreme sides of the line (in the
LA setting) or by arranging them in a ladder structure (in the HC case; see Definition 11).
Thus, we are left with handling the core (in the HC setting) or the extended core (in the LA
setting).

Once again we consider two cases - either the total weight within the (extended) core is
small enough, in which case we embed the core arbitrarily. Otherwise, we recurse on the
instance induced by these data points. We claim that in every recursion step the density of
the (extended) core increases significantly until eventually the recursion ends either when
the (extended) core is sufficiently densely weighted or the total weight within the (extended)
core is small enough.

Our proof is based on several claims. First, we consider the metric’s (extended) core
compared to the peeled off layer. Since our algorithm embeds the two sets separately, we
need to bound the resulting loss in objective value. We show that the weights within the
peeled off layer contribute negligibly towards the objective while the weights between the
peeled off layer and the (extended) core, contribute significantly. Hence, it makes sense then
to peel off this layer in order to maximize the gain in objective value.

While the aforementioned is enough to bound the loss in a single recursion step, it is
not enough. The number of recursion steps may not be constant which, in principle, may
cause a blow up of the error. Nevertheless, we show that the error in each level is bounded
by a geometric sequence and hence is dominated by the error of the deepest recursion step.
Consequently, we manage to upper bound the total accumulated error by a constant that we
may take to be as small as we wish.

While at large this describes our proof techniques, the algorithm and analysis of LA
objective is a bit more nuanced as we will be considering 3 sets: the metric’s core, the peeled
off layer, and any remaining points which together with the core are labeled as the extended
core. In this case, to be able to justify peeling off a layer, we must choose the layer more
aggressively. Specifically, we define this layer as points that are sufficiently far from the core
(rather than any point outside the core, as in the HC case). Fortunately, this defined layer
(see Algorithm 2) fits our criteria (of our general algorithm, Algorithm 1).

Related Work

While the concept of hierarchical clustering has been around for a long time, the HC
objective is relatively recent. In their seminal work, Dasgupta [13] considered the problem
of HC from an optimization view point. Thereafter, Cohen-Addad et al. [12] were the

ICALP 2023

13:4 Multi Layer Peeling for LA and HC

first to consider the objective we use in our manuscript. In their work they showed that
the well known Average-Linkage algorithm yields an approximation of 2

3 . Subsequently,
Charikar et al. [8] improved upon this result through the use of semidefinite programming -
resulting in a 0.6671 approximation. Finally, Naumov et al. [25] improved this to 0.74 by
approximating the Balanced Max-2-SAT problem. With respect to the Max LA objective,
Hassin and Rubinstein [20] were first to consider the problem. Through an approach of
bisection and then greedily arranging the points, Hassin and Rubinstein managed to achieve
a 0.5 approximation. We note that the previous mentioned results all hold for arbitrary
weights, while our main contribution is showing that by assuming the triangle inequality
(i.e., metric-based dissimilarity weights) we may achieve PTAS’s for both objectives. We
further note that with respect to metric-based dissimilarity weights, specifically an L1 metric,
Rajagopalan et al. [26] proved a 0.9 approximation through the use of random cut trees.

Both objectives have been originally studied with respect to their minimization variants.
The minimum LA setting was first considered by Hansen [19]. Hansen leveraged the work of
Leighton and Rao [23] on balanced separators in order to approximate the minimum linear
arrangement objective to facor of O(log2 n). Following several works improving upon this
result, both Charikar et al. [10] and Feige and Lee [17] leveraged the novel work of Arora et
al. [4] on rounding of semidefinite programs, and combined this with the rounding algorithm
of Rao and Reicha [27] in order to show a O(

√
log n log log n) approximation. For further

reading on these are related types of objectives see [16, 27, 29, 28]. On the other hand, as
mentioned earlier the minimum HC setting was introduced by Dasgupta [13] and extensively
studied as well (e.g., see [13, 12, 7, 8, 1, 2, 31]).

Most related to our work is that of de la Vega and Kenyon [15]. In their work they provide
a PTAS for the Max Cut problem given a metric. The algorithm works by first creating a
graph of clones (wherein each original vertex is cloned a number of times that is based on its
outgoing weight in the original metric) with the property of being dense. It thereafter solves
the problem in this new graph by applying the algorithm of de la Vega and Karpinski [14].
For our objectives (HC and LA) such an approach seems to fail - specifically due to the fact
that our objectives take into consideration the number of nodes in every induced cut and the
cloned graph inflates the number of nodes which in turn inflates our objective values. Thus,
for our considered types of objectives we need the more intricate process of iterative peeling
(and subsequently terminating the process with more suited algorithms that leverage the
General Graph Partitioning algorithm of Goldreich et al. [18]). It is worth while mentioning
that there has also been an extensive study of closely related objectives with respect to dense
instances (e.g. see [22, 3, 21]). However these types of approaches seem to fall short since
our considered metrics need not be dense.

2 Multi-Layer Peeling Framework

Before defining our algorithms we need the following definitions.

▶ Definition 3. Let G = (V, w) denote a metric and U ⊂ V denote a subset of its nodes.
We introduce the following notations: (1) let DU = maxi,j∈U wi,j denote U ’s diameter, (2)
let WU =

∑
i,j∈U wi,j denote U ’s sum of weights, (3) let nU = |U | denote U ’s size and

(4) let ρU = WU

n2
U

DU
denote U ’s weighted density1.

1 Typically the density is defined with respect to
(

n
2

)
. For ease of presentation, we chose to define it with

respect to n2 - the proofs remain the same using the former definition.

Y. Azar and D. Vainstein 13:5

Figure 1 A recursion step (case (c)) and the two possible halting steps (cases (a) and (b)). The
yellow points define the metric’s core. In the HC case we peel off both red and green points in a
single step, while in the LA we must be more delicate and only peel off the green points.

All our algorithms will make use of the following simple yet useful structural lemma
that states that for small-density instances there exists a large cluster of nodes with a small
diameter. The proof appears in the full version.

▶ Lemma 4. For any metric G = (V, w) there exists a set U ⊂ V such that DU ≤ 4DV
√

ρV

and nU ≥ nV (1 − √
ρV).

▶ Definition 5. Given a metric G = (V, w) we denote U ⊂ V as guaranteed by Lemma 4 as
a metric’s core.

Note that the core can be found algorithmicaly simply through brute force (while the
core need not be unique, our algorithms will choose one arbitrarily).

Throughout our paper we consider different metric-based objectives. In order to solve
them, we apply the same recipe - if the instance is sufficiently densely weighted, apply an
algorithm for these types of instances. Otherwise, the algorithm detects the metric’s core
(which is a small-diameter subset containing almost all nodes) and peel off (and subsequently
embed) a layer of data points that are far from the core. The algorithm then considers the
core; if it is sufficiently small (in terms of inner weights) then we embed the core arbitrarily
and halt. Otherwise, we recurse on the core. Our algorithms for both objectives (LA and
HC) will follow the same structure as defined in Algorithm 1.

Algorithm 1 General Algorithm.

if the instance is sufficiently densely weighted then // case (a)
Solve it using ALGd−w.

else
Let C denote the metric’s core (as defined by Definition 5).
Define the layer to peel off A ⊂ V \ C appropriately.
Embed A.
if WV \A is negligible then Embed V \ A arbitrarily and return. ; // case (b)
else Continue recursively on V \ A ; // case (c)

We denote by cases (a) and (b) the different cases for which the algorithm may terminate
and by case (c) the recursive step. We further denote by ALGd−w an auxiliary algorithm that
will handle sufficiently densely weighted instances. (These algorithms will differ according to
the different objectives).

Henceforth, given an algorithm ALG and metric G we denote by ALG(G) the algorithm’s
returned embedding. We note that when clear from context we overload the notation and
denote ALG(G) as the embedding’s value under the respective objectives. Equivalently, we
will use the term OPT (G) for the optimal embedding.

ICALP 2023

13:6 Multi Layer Peeling for LA and HC

Our different algorithms will be similarly defined and thus so will their analyses. Thus,
we introduce a general scheme for analyzing such algorithms. Let k denote the number of
recursive calls our algorithm performs. Furthermore, let Gi denote the instance the algorithm
is called upon in step i for i = 0, 1, . . . , k. (I.e., G = G0 and ALG(Gk) does not perform a
recursive step, meaning that it terminates with case (a) or (b)). We first observe that by
applying a simple averaging argument we get the following useful observation.

▶ Observation 6. If there exist αi, βi, γi > 0 such that ALG(Gi) ≥ αi + ALG(Gi+1) and
OPT (Gi) ≤ βi + γiOPT (Gi+1) for all i = 0, . . . , k − 1 then

ALG(G)
OPT (G) ≥

∑k−1
i=0 αi + ALG(Gk)∑k−1

i=0
(
βiΠi−1

j=0γj

)
+ (Πk−1

i=0 γi)OPT (Gk)

≥ min{min
i

{ αi

βiΠi−1
j=0γj

},
ALG(Gk)

(Πk−1
i=0 γi)OPT (Gk)

}.

Thus, in order to analyze a given algorithm, it will be enough to set the values of αi, βi

and γi, and further analyze the approximation ratio of ALG(Gk)
OP T (Gk) for the different terminating

cases (cases (a) and (b)).

3 Notations and Preliminaries

We introduce the following notation to ease our presentation later on.

▶ Definition 7. Given a metric G = (V, w), a solution SOL(G) for the LA objective
and disjoints sets A, B ⊂ V we define: SOL(G)|A =

∑
i,j∈A wi,jyi,j and SOL(G)|A,B =∑

i∈A,j∈B wi,jyi,j . For the HC objective the notations are defined symmetrically by replacing
yi,j with |Ti,j |.

We will make use of algorithms belonging to the following class of algorithms.

▶ Definition 8. An algorithm is considered an Efficient Polytime Randomized Approximation
Scheme (EPRAS) if for any ϵ > 0 the algorithm has expected running time of f(1

ϵ)nO(1) and
approximates the optimal solution’s value up to a factor of 1 − ϵ.

We will frequently use the following (simple) observations and thus we state them here.

▶ Observation 9. Given values αi ≥ 0, α ∈ (0, 1
k(k+1)) and k ∈ N we have: (1) Πi(1 − αi) ≥

1 −
∑

i αi, (2) 1 + kα < 1
1−kα < 1 + (k + 1)α and (3) 1 + kα < ekα < 1 + (k + 1)α.

The following facts will prove useful in our subsequent proofs and are therefore stated here.

▶ Fact 10. Given a metric G, if the optimal linear arrangement under the LA objective is
OPTLA(G) and the optimal hierarchical clustering under the HC objective is OPTHC(G)
then we have OPTLA(G) ≥ 1

3 n
∑

i,j wi,jyi,j and OPTHC(G) ≥ 2
3 n

∑
i,j wi,j |Ti,j |.

We note that the HC portion of Fact 10 has been used widely in the literature (e.g., see
proof in [12]). The LA portion of Fact 10 is mentioned in Hassin and Rubinstein [20]. Finally,
in the HC section we make use of “ladder” HC trees. We define them here.

▶ Definition 11. We define a “ladder” as an HC tree that cuts a single data point from the
rest at every cut (or internal node).

Y. Azar and D. Vainstein 13:7

4 The Linear Arrangement Objective

We will outline the section as follows. We begin by presenting our algorithms (first the
algorithm that handles case (a) and thereafter the general algorithm). We will then bound the
algorithm’s approximation guarantee (by following the bounding scheme of Observation 6).
Finally, we will analyze the algorithm’s running time.

4.1 Defining the Algorithms
Here we begin by applying our general algorithm to the linear arrangement problem (which
we will denote simply as ALG). The algorithm uses, as a subroutine, an algorithm to handle
case (a). We denote this subroutine as ALGd−w and define it following the definition of
ALG.

4.1.1 Defining ALG

Here we apply our general algorithm (Algorithm 1) to the linear arrangement setting. In
order to do so, roughly speaking, we define the layer to peel off A as the set of all points
which are “far” from the metric’s core. We also introduce a subroutine to handle densely
weighted instances, ALGd−w.

Algorithm 2 Linear Arrangement Algorithm (ALG).

if ρ ≥ ϵ6 then solve it using ALGd−w. ; // case (a)
else

Let C denote the metric’s core (as defined by Lemma 4).
Let A denote all data points that are of distance ≥ ϵ2DV from C.
Place A to the left of V \ A. Arrange A arbitrarily.
if WV \A < ϵWV then Arrange V \ A arbitrarily and return. ; // case (b)
else Continue recursively on V \ A. ; // case (c)

The set V \ {A ∪ C} will be used frequently in the upcoming proofs and thus we give it its
own notation.

▶ Definition 12. Denote B = V \ {A ∪ C} where A and C are defined as in Algorithm 2.

4.1.2 Defining ALGd−w

Here we will introduce an algorithm to handle case (a) type instances. Before formally
defining the algorithm, we will first provide some intuition. Towards that end we first
introduce the following definition.

▶ Definition 13. Consider OPT (Gk)’s embedding into the line, [n]. Partition [n] into 1
ϵ

consecutive sets each of size ϵn and let P ∗
i denote the points embedded by OPT (Gk) into the

i’th consecutive set. Furthermore, denote by P ∗ = {P ∗
i } the induced partition of the metric.

Later on, we will show that OPT (Gk)’s objective value is closely approximated by the
value generated solely from inter-partition-set edges (i.e., any (u, v) where u, v lie in different
partition sets of P ∗). While OPT (Gk) cannot be found algorithmically, assuming the above
holds, it is enough for ALGd−w to guess the partition P ∗. Indeed, that is exactly what we
will do, by using the general graph partitioning algorithm of Goldreich et al. [18].

ICALP 2023

13:8 Multi Layer Peeling for LA and HC

We denote the General Graph Partitioning algorithm of Goldreich et al. [18] as
PT (G, Φ, ϵerr). See Definition 21 for a definition of Φ and ϵerr (these will be defined
by ALGd−w as well) and see Theorem 22 for the tester’s guarantees. We are now ready to
define our algorithm that handles sufficiently densely weighted instances (Algorithm 3).

Algorithm 3 LA Algorithm for Sufficiently Densely Weighted Instances (ALGd−w).

Let k = 1
ϵ denote the size of the partition.

for {µj,j′}j≤k,j′≤k,j ̸=j′ ⊂ {iϵ9n2DV : i ∈ N ∧ i ≤ 1
ϵ7 } do

Let Φ = {ϵn, ϵn}k
j=1 ∪ {µj,j′ , µj,j′}k

j,j′=1.
Run PT (G, Φ, ϵerr = ϵ9). Let P denote the output partition (if succeeded).
Let ŷ denote the linear arrangement obtained from embedding P consecutively on
the line (and arbitrarily within the partition sets).

Compute the value
∑

e weŷe for P .
Return the partition with maximum

∑
e weŷe value.

4.2 Analyzing the Approximation Ratio of ALG

Now that we have defined ALG we are ready to analyze its approximation ratio. Recall that
by Observation 6 it is enough to analyze the approximation ratio of cases (a), (b) and the
total loss incurred by the recursion steps (i.e., by setting αi, βi and γi).

4.2.1 Structural Lemmas
Recall that we defined k to be the number of recursion steps used by ALG and that Gi is the
instance that ALG is applied to at recursion step i. Further recall that given Gi, ALG(Gi)
partitioned the instance into Ai, Bi and Ci and that, informally, by Lemma 4 nCi contains
the majority of the data points and DCi

is relatively small compared to DVi
.

By the definition of Ci, Ai could be considered as a set of outliers. Therefore, intuitively
it makes sense to split Ai from Ci. In order to prove our algorithm’s approximation ratio we
will show that in fact one does not lose too much compared to optimal solution, by splitting
Ai from Ci. In order to do so we will show that in fact, both the values of ALG and OPT

will be roughly equal to 1
2 nWAi,Ci

(which makes sense intuitively since Ci is of low diameter
and contains many points and Ai are the points that are far from this cluster).

The following lemmas consider 2 types of algorithms - algorithms that split Ai and Ci

and algorithms that do not. Furthermore, they show that in fact, by the structural properties
of Ai and Ci, if we consider the values generated by these 2 types of algorithms restricted
to the objective value generated by the inter-weights WAi,Ci , are approximately equal. We
begin by lower bounding the value generated by algorithms that split Ai and Ci. Due to
lack of space, we defer the following proofs to the full version.

▶ Lemma 14. Given the two disjoint sets Ci and Ai and a linear arrangement y that places
all nodes in Ai to the left of all nodes in Ci we are guaranteed that∑

c∈Ci,a∈Ai

wa,cya,c ≥ nCi

2 (WCi,Ai
− nCi

nAi
DCi

).

Due to the fact that Ci is a small cluster containing most of the data points the above
lemma reduces to the following corollary.

Y. Azar and D. Vainstein 13:9

▶ Corollary 15. Given any linear arrangement y that places all nodes in Ai to the left of all
nodes in Ci we are guaranteed that∑

a∈Ai,c∈Ci

wa,cya,c ≥ 1
2nWAi,Ci(1 −

5√
ρ

ϵ2)

Now that we have lower bounded algorithms that split Ai and Ci we will upper bound
algorithms that do not have this restriction. (Note that we begin by handling the case where
one of the disjoint sets is a single data point and thereafter generalize it to two disjoint sets).

▶ Lemma 16. Given a set Ci and a point p ̸∈ Ci, we are guaranteed that∑
c∈Ci

wp,cyp,c ≤ (Wp,Ci + nCiDCi)(n − nCi

2).

We are now ready to upper bound the inter-objective-value of two sets of disjoint points.

▶ Lemma 17. Given the two disjoint sets Ci and Ai and any linear arrangement y we are
guaranteed that∑

c∈Ci,a∈Ai

wa,cya,c ≤ (n − nCi

2)(WCi,Ai
+ nCi

nAi
DCi

).

Due to the fact that Ci is a small cluster containing most of the data points the lemma
reduces to the following corollary.

▶ Corollary 18. Given any linear arrangement y we are guaranteed that∑
a∈Ai,c∈Ci

wa,cya,c ≤ 1
2nWAi,Ci

(1 +
9√

ρ

ϵ2).

We will want to show that the objective values of both ALG and OPT (and some other
intermediate values that will be defined later on) are approximately determined by their
value on the inter-weights of WAi,Ci . In order to do so, we first introduce the following
structural lemma that will help us explain this behaviour.

▶ Lemma 19. Given an instance G and sets A, B and C as defined by ALG(G) we have
WA + WA,B ≤ 2

√
ρ

ϵ2 WA,C .

4.2.2 Analyzing the Approximation Ratio of Case (a) of ALG

We first give an overview the approximation ratio analysis. Recall the definition of P ∗

(Definition 13). The first step towards our proof, is to show that instead of trying to
approximate OPT (Gk), it will be enough to consider its value restricted to intra-partition-set
weights with respect to P ∗. Even more, for such weights wu,v, incident to P ∗

i and P ∗
i+j , it

will be enough to assume that their generated value towards the objective (i.e., the value
yu,v) is only (j − 1)ϵn (while it may be as large as (j + 1)ϵn). Formally, this will be done in
Lemma 20 (whose proof is deferred to the full version).

Next, recall that ALGd−w tries to guess the partition P ∗ (up to some additive error) and
let P denote the partition guessed by ALGd−w. Observe that if guessed correctly, the value
generated towards ALG’s objective for any intra-partition-set weight crossing between Pi

and Pi+j is at least |Pi+1| + · · · |Pi+j−1| and if we managed to guess the set sizes as well
then this value is exactly (j − 1)ϵn (equivalent to that of OPT ’s). This will be done in
Proposition 23.

ICALP 2023

13:10 Multi Layer Peeling for LA and HC

▶ Lemma 20. Given the balanced line partition of set sizes ϵn, denoted as P ∗, we have

OPT (Gk) ≤ (1 + 13ϵ)
∑

1≤i≤k−1
1≤j≤k−i

WP ∗
i

,P ∗
i+j

(|P ∗
i+1| + · · · + |P ∗

i+j−1|).

Before proving Proposition 23 we state the properties of the general graph partitioning
algorithm of Goldreich et al. [18].

▶ Definition 21 ([18]). Let Φ = {λLB
j , λUB

j }k
j=1 ∪ {µLB

j,j′ , µUB
j,j′ }k

j,j′=1 denote a set of non-
negative values such that λLB

j ≤ λUB
j and µLB

j,j′ ≤ µUB
j,j′ . We define GPΦ the set of graphs G

on n vertices that have a k partition (V1, . . . , Vk) upholding the following constraints

∀j : λLB
j ≤ |Vj |

n
≤ λUB

j ; ∀j, j′ : µLB
j,j′ ≤

WVj ,Vj′

n2 ≤ µUB
j,j′ .

▶ Theorem 22 ([18]). Given inputs G = (V, w) with |V | = n and w : V × V → [0, 1]
describing the graph and Φ describing bounds on the wanted partition, ϵerr, the algorithm
PT (G, Φ, ϵerr) has expected running time2 of

exp
(

log(1
ϵerr

) · (O(1)
ϵerr

)k+1)
+ O(

log k
ϵerr

ϵ2
err

) · n.

Furthermore, if G ∈ GPΦ as in Definition 21 then the algorithm outputs a partition satisfying
∀j : λLB

j − ϵerr ≤ |Vj |
n ≤ λUB

j + ϵerr,

∀j, j′ : µLB
j,j′ − ϵerr ≤

WVj ,V
j′

n2 ≤ µUB
j,j′ + ϵerr.

We are now ready to prove Proposition 23.

▶ Proposition 23. If ALG terminates in case (a) then ALGd−w(Gk)
OP T (Gk) = ALG(Gk)

OP T (Gk) ≥ 1 − 20ϵ.

Proof. Let P = {Pi} denote the partition returned by PT (Gk, Φ, ϵerr) and recall that its
number of sets is k = 1

ϵ and that ϵerr = ϵ9. We first observe that by Theorem 22 we are
guaranteed that the error in |Pi| compared to |P ∗

i | = ϵn is at most |Pi| ≥ ϵn − ϵerrn (due to
the fact that in Φ we requested sets of size exactly ϵn). Therefore

ALGd−w ≥
∑

1≤i≤k−1
1≤j≤k−i

WPi,Pi+j (|Pi+1| + · · · + |Pi+j−1|) ≥
∑

1≤i≤k−1
1≤j≤k−i

(j − 1)(ϵn − ϵerrn)WPi,Pi+j ,
(1)

where WPi,Pi+j
denotes the weight crossing between Pi and Pi+j . For ease of presentation

we will remove the subscript in the summation henceforth.
Consider the difference between the cut size of WPi,Pi+j

and WP ∗
i

,P ∗
i+j

. Their difference
originates from two errors: (1) the error that incurred by the PT algorithm (see The-
orem 22) and (2) the error ALGd−w incurred in order to guess the partition of OPT (Gk)
(see Algorithm 3). Therefore,

WPi,Pi+j ≥ WP ∗
i

,P ∗
i+j

− ϵerrn2DV − ϵ9n2DV = WP ∗
i

,P ∗
i+j

− 2ϵ9n2DV

where the last equality is since ϵerr = ϵ9. Combining this with inequality 1 yields

ALGd−w ≥ (ϵn − ϵerrn) ·
∑

(j − 1)WP ∗
i

,P ∗
i+j

− (ϵn − ϵerrn) · 2(ϵ9n2)DV

∑
(j − 1) ≥

(ϵn − ϵerrn) ·
∑

(j − 1)WP ∗
i

,P ∗
i+j

− 2n3ϵ7DV ,
(2)

2 We remark that the original algorithm contains a probability of error δ, that appears in the running
time. We disregard this error and bound the expected running time of the algorithm.

Y. Azar and D. Vainstein 13:11

where the last inequality follows since ϵerr > 0 and
∑

(j − 1) =
∑k

i=1
∑k

j=i+1(j − 1) ≤ k3 =
ϵ−3.

Due to the fact that we are in case (a) we have that W
n2DV

= ρ ≥ ϵ6. By Fact 10 we have
that OPT ≥ 1

3 nW and therefore 2n3ϵ7DV can be bounded by 2n3ϵ7DV ≤ 2ϵnW ≤ 6ϵOPT .
Thus we get 2n3ϵ7DV ≤ 6ϵOPT (Gk). Combining this with inequality 2 yields

ALGd−w ≥ (ϵn − ϵerrn) ·
∑

(j − 1)WP ∗
i

,P ∗
i+j

− 6ϵOPT (Gk). (3)

On the other hand, recall that P ∗ denotes the balanced partition where all sets are of
size ϵn. Therefore, by Lemma 20 we therefore get

OPT (Gk) ≤ (1 + 13ϵ)
∑

WP ∗
i

,P ∗
i+j

(|P ∗
i+1| + · · · + |P ∗

i+j−1|) =

(1 + 13ϵ)
∑

(j − 1)(ϵn)WP ∗
i

,P ∗
i+j

= ϵn(1 + 13ϵ) ·
∑

(j − 1)WP ∗
i

,P ∗
i+j

.
(4)

Combining inequalities 3 and 4 yields

ALGd−w ≥ ϵn − ϵerrn

ϵn(1 + 13ϵ)OPT (Gk) − 6ϵOPT (Gk) =

1 − ϵ8

1 + 13ϵ
OPT (Gk) − 6ϵOPT (Gk) ≥ (1 − 20ϵ)OPT (Gk),

thereby concluding the proof. ◀

4.2.3 Analyzing the Approximation Ratio of Case (b) of ALG

Using our structural lemmas we will analyze the approximation ratio of ALG applied to
Gk under the assumption that the algorithm terminated in case (b) (i.e., that ρ < ϵ6 and
WB∪C ≤ ϵWGk

). The full proof is deferred to the full version.

▶ Proposition 24. If ALG terminates in case (b) then ALG(Gk)
OP T (Gk) ≥ 1 − 33ϵ.

Sketch. The proof follows the following path. Due to the fact that most of the instance’s
density is centered at the metric’s core C, the majority of OPT (Gk)’s objective is derived from
weights incident to C. Since we are case (b), the weight of WB∪C is negligible and therefore
we will show that in fact OPT (Gk)’s objective is defined by OPT (Gk)|A,C . Thereafter, we
show that in fact the best strategy to optimize for weights in WA,C is to place A at one
extreme of the line and C at the other - which, fortunately, is what ALG(Gk) (approximately)
does - thereby approximating OPT (Gk). ◀

4.2.4 Setting the Values αi, βi and γi

Due to lack of space, the following proofs are deferred to the full version.

▶ Proposition 25. For Ai and Ci as defined by our algorithm applied to Gi and for αi =
1
2 nWA,C(1 − 5√

ρ

ϵ2), we have ALG(Gi) ≥ αi + ALG(Gi+1).

▶ Proposition 26. Let Gi = (Vi, wi) and Gi+1 = (Vi+1, wi+1) denote the instances defined by
the i and i+1 recursion steps. Furthermore let βi = 1

2 nVi
WAi,Ci

(1+ 13√
ρ

ϵ2) and γi = 1+4√
ρi.

Therefore, OPT (Gi) ≤ βi + γiOPT (Gi+1).

Thus, we have managed to set the values of αi, βi and γi as follows.

▶ Definition 27. We define the values αi, βi and γi as follows

αi = 1
2nWAi,Ci(1 −

5√
ρi

ϵ2); βi = 1
2nViWAi,Ci(1 +

13√
ρi

ϵ2); γi = 1 + 4√
ρi. (5)

ICALP 2023

13:12 Multi Layer Peeling for LA and HC

4.2.5 Putting it all Together
Now that we have analyzed the terminal cases of the algorithm (cases (a) and (b)) and that
we have set the values of αi, βi and γi we will to combine these results to prove ALG’s
approximation ratio (as in Observation 9). In order to so we must therefore bound the
values mini{ αi

βiΠi−1
j=0γj

} and ALG(Gk)
(Πk−1

i=0 γi)OP T (Gk) . However, before doing so we will first show that

Πi−1
j=0γj converges. Recall that γi = 1 + 4√

ρi. The following lemma shows that the instances’
densities (ρi) increase at a fast enough rate (exponentially) in order for Πi−1

j=0γj to converge.

▶ Lemma 28. For all i = 1, . . . , k − 1 we are guaranteed that ρi+1 ≥ 4ρi.

Proof. Let V denote the set of nodes of Gi. Recall the notations A, B and C defined by our
algorithm applied to V (in particular, the set of nodes of Gi+1 is exactly B ∪ C). Therefore,
if we denote by DB−C the largest distance between any point in B and its closest point in
C, then DB∪C ≤ 2DB−C + DC ≤ 2ϵ2DV + 4DV

√
ρi, where the first inequality follow from

the triangle inequality and the second follows due to the fact that B is defined as the set of
all points of distance at most ϵ2 from C. Therefore,

ρi+1 = WB∪C

n2
B∪C · DB∪C

≥ WV

n2
V · DV

(ϵ

2ϵ2 + 4√
ρi

) = ρi(
ϵ

2ϵ2 + 4√
ρi

), (6)

where the equalities follows by the definition of ρi and the inequality follows due to the fact
that WB∪C ≥ ϵWV (which follows due to the fact that we are in case (c)), nB∪C ≤ nV and
DB∪C ≤ (2ϵ2 + 4√

ρi)DV (as stated above). Since we are in case (c), we are guaranteed that
ρi ≤ ϵ6 and therefore

ϵ

2ϵ2 + 4√
ρi

≥ ϵ

2ϵ2 + 4ϵ3 ≥ 1
3ϵ

, (7)

since ϵ ≤ 10−2. Combining inequalities 6 and 7, and since ϵ < 10−2 yields ρi+1 ≥
ρi(ϵ

2ϵ2+4√
ρi

) ≥ ρi

3ϵ ≥ 4ρi, thereby concluding the proof. ◀

We are now ready to show that Πi−1
j=0γj converges.

▶ Lemma 29. For γi = 1 + 4√
ρi we have Πi−1

j=0γj ≤ 1 + 5√
ρi.

Proof. Observe that Πi−1
j=0(1 + 4√

ρj) ≤ e
4·

∑
j

√
ρj ≤ e4√

ρi ≤ 1 + 5√
ρi, where the first in-

equality follows from Observation 9, the second follows since √
ρj are exponentially increasing

(see full version) and the third inequality follows again by Observation 9 combined with the
fact that ρ < ϵ2 and ϵ < 10−2. ◀

Next we leverage the former lemma to bound mini{ αi

βiΠi−1
j=0γj

} and ALG(Gk)
(Πk−1

i=0 γi)OP T (Gk) .

▶ Proposition 30. For αi, βi and γi as in Definition 27, we have mini{ αi

βiΠi−1
j=0γj

} ≥ 1 − 23ϵ.

Proof. We first bound αi

βi
. By the definitions of αi and βi we have

αi

βi
=

1 − 5√
ρi

ϵ2

1 + 13√
ρi

ϵ2

≥ (1 −
5√

ρi

ϵ2)(1 −
13√

ρi

ϵ2) ≥ 1 −
18√

ρi

ϵ2 , (8)

where the first inequality follows from the definitions of αi and βi and the rest of the
inequalities follow since ϵ < 102 and ρ < ϵ6.

Y. Azar and D. Vainstein 13:13

By Lemma 29 we are guaranteed that Πi−1
j=0γj ≤ 1+5√

ρi. Combining this with inequality
8 yields

αi

βiΠi−1
j=0γj

≥
1 − 18√

ρi

ϵ2

1 + 5√
ρi

≥ (1 − 18
ϵ2

√
ρi)(1 − 5√

ρi) ≥ 1 − 23
ϵ2

√
ρi,

and since ρi only increases and ρk−1 ≤ ϵ6 we have mini{ αi

βiΠi−1
j=0γj

} ≥ 1 − 23
ϵ2

√
ρk−1 ≥ 1 − 23ϵ,

thereby concluding the proof. ◀

▶ Proposition 31. For γi = 1 + 4√
ρi we have ALG(Gk)

(Πk−1
i=0 γi)OP T (Gk) ≥ 1 − 34ϵ.

Proof. By Propositions 23 and 24 we are guaranteed that ALG(Gk)
OP T (Gk) ≥ 1 − 33ϵ. On the other

hand by by Lemma 29 we are guaranteed that Πk−2
i=0 γi ≤ 1 + 5√

ρk−1. Therefore, if k = 1
then ALG(Gk)

(Πk−1
i=0 γi)OP T (Gk) = ALG(Gk)

OP T (Gk) ≥ 1 − 33ϵ. Otherwise, we have

ALG(Gk)
(Πk−1

i=0 γi)OPT (Gk)
≥ 1 − 33ϵ

(1 + 4√
ρk−1)(1 + 5√

ρk−1) ≥ 1 − 33ϵ

(1 + 4ϵ3)(1 + 5ϵ3) ≥ 1 − 34ϵ,

where the second inequality follows since ρk−1 < ϵ6 (since we recursed to step k) and the
subsequent inequalities follow since ϵ < 10−3 - thereby concluding the proof. ◀

Finally, we combine Propositions 30 and 31 to bound ALG’s approximation ratio.

▶ Theorem 32. For any metric G, ALG(G)
OP T (G) ≥ 1 − 34ϵ.

4.3 Analyzing the Running Time of ALG

Consider the definition of ALG. We observe that in each recursion step, the algorithm finds
the layer to peel off, A, and then recurses. Therefore the running time is defined by the
sum of these recursion steps, plus the terminating cases (i.e., either case (a) or case (b)).
Recall that case (a) applies ALGd−w on the instance, while case (b) arranges the instance
arbitrarily. Therefore, a bound on cases (a) and (b) is simply a bound on the running time
of ALGd−w which is given by Lemma 33 (whose proof appears in the full version).

▶ Lemma 33. Given an instance G, the running time of ALGd−w(G) is at most (1
ϵ7)

1
ϵ2 ·O(n2).

▶ Remark 34. A bi-product of Lemma 28 is that the number of recursion steps is bounded by
O(log n). The proof follows similarly to the proof of Lemma 48 substituting the inequality
ρi+1 ≥ 4ϵ

√
ρi with ρi+1 ≥ 4√

ρi (which holds due to Lemma 28).
We are now ready to analyze the running time of ALG. (The proof is deferred to the full
version.)

▶ Theorem 35. The algorithm ALG is an EPRAS (with running time O(n2 log n) plus the
running time of ALGd−w).

▶ Remark 36. We remark that one may improve the running time by replacing ALGd−w

with any faster algorithm while slightly degrading the quality of the approximation.

5 The Hierarchical Clustering Objective

The section is outlined as follows. We begin by presenting our algorithms (first the algorithm
to handle case (a) and subsequently the general algorithm). Thereafter we will bound the
algorithm’s approximation guarantee (by following the bounding scheme of Observation 6).
Finally, we will analyze the algorithm’s running time.

ICALP 2023

13:14 Multi Layer Peeling for LA and HC

5.1 Defining the Algorithms

As in the linear arragement setting, we will begin by applying our general algorithm to the
linear arrangement problem (which we will denote simply as ALG). The algorithm uses, as
a subroutine, an algorithm to handle case (a). We denote this subroutine as ALGd−w and
define it following the definition of ALG.

5.1.1 Defining ALG

Here we apply our general algorithm (Algorithm 1) to the hierarchical clustering setting. In
order to do so, roughly speaking, we define the layer to peel off A as all points outside of the
metric’s core.

Algorithm 4 Hierarchical Clustering Algorithm (ALG).

if ρ ≥ ϵ2 then Solve the instance using ALGd−w. ; // case (a)
else

Let C denote the metric’s core (as defined by Lemma 4).
Let A = V \ C denote the rest of the points.
Arrange A as a (arbitrary) ladder and denote the tree by TA.
if WC < 16ϵ · WV then // case (b)

Arrange C arbitrarily and denote the resulting tree by TC .
Attach TC ’s root as a child of the bottom most internal node of TA and return.

else // case (c)
Continue recursively on C and denote the resulting tree by TC .
Attach TC ’s root as a child of the bottom most internal node of TA and return.

▶ Remark 37. Note that Algorithm 4 conforms to the general Algorithm 1 since C = V \ A.

5.1.2 Defining ALGd−w

We will use the algorithm of Vainstein et al. [31] as ALGd−w. As part of their algorithm
they make use of the general graph partitioning algorithm of Goldreich et al. [18] which is
denoted by PT (·). Since we will use PT (·) to devise our own algorithm for the LA objective
we refer the reader to Definition 21 and Theorem 22 for a more in-depth explanation of the
PT (·) algorithm. We restate ALGd−w in Algorithm 5 as defined in Vainstein et al. [31].

Algorithm 5 HC Algorithm for Sufficiently Densely Weighted Instances (ALGd−w).

Enumerate over all trees T with k = 1
ϵ internal nodes.

for each such T do
for {λi}i≤k ⊂ {iϵ2n : i ∈ N ∧ i ≤ 3

ϵ } do
for {µj,j′}j≤k,j′≤k,j ̸=j′ ⊂ {iϵ3n2DV : i ∈ N ∧ i ≤ 9

ϵ } do
Let Φ = {λi, λi}k

i=1 ∪ {µj,j′ , µj,j′}k
j,j′=1.

Run PT (G, Φ, ϵerr = ϵ3). Let P denote the output partition (if succeeded).
Compute the HC objective value based on T and P .

Return the partition P and tree T with maximal HC objective value.

Y. Azar and D. Vainstein 13:15

5.2 Analyzing the Approximation Ratio of ALG

Now that we have defined ALG we are ready to analyze its approximation ratio. Recall that
by Observation 6 it is enough to analyze the approximation ratio of cases (a), (b) and the
total approximation loss generated by the recursion steps (i.e., by finding αi, βi and γi).

5.2.1 Analyzing the Approximation Ratio of Case (a) of ALG

In order to analyse the approximation ratio of ALGd−w in our setting we must first recall
the definition of instances with not-all-small-weights (as defined by Vainstein et al. [31]).

▶ Definition 38. A metric G is said to have not all small weights if there exist constants
(with respect to nV) c0, c1 < 1 such that the fraction of weights smaller than c0 · DV is at
most 1 − c1.

The following theorem was presented in Vainstein et al. [31].

▶ Theorem 39. For any constant ξ > 0 and any metric G = (V, w) with not all small
weights (with constants c0 and c1) we are guaranteed that ALGd−w(G)

OP T (G) ≥ 1 − O(ξ
c0·c1

) and that
ALGd−w’s expected running time is at most f(1

ξ) · n2.

Applying the above theorem with ξ = ϵ5 to our metric instance Gk yields Proposition 40
(whose proof is deferred to the full version).

▶ Proposition 40. If ALG terminates in case (a) then ALGd−w(Gk)
OP T (Gk) = ALG(Gk)

OP T (Gk) ≥ 1 − ϵ.

5.2.2 Analyzing the Approximation Ratio of Case (b) of ALG

▶ Proposition 41. If ALG terminates in case (b) then ALG(Gk)
OP T (Gk) ≥ 1 − 17ϵ.

Proof. The proof appears in the full version. ◀

5.2.3 Setting the Values αi, βi and γi

Due to lack of space, we defer the following proofs to the full version.

▶ Lemma 42. For Ai and Ci as defined by our algorithm applied to Gi and for αi =
nVi

(WAi
+ WAi,Ci

)(1 − √
ρi) we have ALG(Gi) ≥ αi + ALG(Gi+1).

▶ Lemma 43. Let Gi = (Vi, wi) and Gi+1 = (Vi+1, wi+1) denote the instances defined by
the i and i + 1 recursion steps. Furthermore, let βi = nVi

(WAi
+ WAi,Ci

) and γi = 1 + 2√
ρi.

Therefore, OPT (Gi) ≤ βi + γiOPT (Gi+1).

Thus, we combine these values in Definition 44.

▶ Definition 44. We define the values αi, βi and γi as follows

αi = nVi
(WAi

+ WAi,Ci
)(1 − √

ρi); βi = nVi
(WAi

+ WAi,Ci
); γi = 1 + 2√

ρi.

5.2.4 Putting it all Together
Now that we have analyzed the terminal cases of the algorithm (cases (a) and (b)) and
that we have set the values of αi, βi and γi we will combine these results to prove ALG’s
approximation ratio (as in Observation 6). Due to lack of space we defer the proofs of this
section to the full version.

ICALP 2023

13:16 Multi Layer Peeling for LA and HC

▶ Proposition 45. For αi, βi and γi as in Definition 44, we have mini{ αi

βiΠi−1
j=0γj

} ≥ 1 − 4ϵ.

▶ Proposition 46. For γi = 1 + 2√
ρi we have ALG(Gk)

(Πk−1
i=0 γi)OP T (Gk) ≥ 1 − 23ϵ.

▶ Theorem 47. For any metric G, ALG(G)
OP T (G) ≥ 1 − 23ϵ.

5.3 Analyzing the Running Time of ALG

Consider the definition of ALG. In each recursion step, the algorithm finds the layer to peel
off and then recurses. Therefore the running time is defined by the sum of these recursion
steps, plus the terminating cases (i.e., either case (a) or case (b)). Recall that case (a) applies
ALGd−w on the instance, while case (b) arranges the instance arbitrarily. Therefore, a bound
on cases (a) and (b) is simply a bound on the running time of ALGd−w which is given by
Theorem 39 [31]. In Lemma 48 we bound the number of recursion steps and subsequently
prove Theorem 49 (the proofs of which appears in the full version).

▶ Lemma 48. The number of recursion steps performed by Algorithm 4 is bounded by
O(log log n).

▶ Theorem 49. The algorithm ALG is an EPRAS (with running time O(n2 log log n) plus
the running time of ALGd−w).

▶ Remark 50. We remark that one may improve the running time by replacing ALGd−w

with any faster algorithm while slightly degrading the quality of the approximation.

References
1 Sara Ahmadian, Vaggos Chatziafratis, Alessandro Epasto, Euiwoong Lee, Mohammad Mahdian,

Konstantin Makarychev, and Grigory Yaroslavtsev. Bisect and conquer: Hierarchical clustering
via max-uncut bisection. CoRR, abs/1912.06983, 2019. arXiv:1912.06983.

2 Noga Alon, Yossi Azar, and Danny Vainstein. Hierarchical clustering: A 0.585 revenue
approximation. In Jacob D. Abernethy and Shivani Agarwal, editors, Conference on Learning
Theory, COLT 2020, 9-12 July 2020, Virtual Event [Graz, Austria], volume 125 of Proceedings
of Machine Learning Research, pages 153–162. PMLR, 2020. URL: http://proceedings.mlr.
press/v125/alon20b.html.

3 Sanjeev Arora, David R. Karger, and Marek Karpinski. Polynomial time approximation
schemes for dense instances of np-hard problems. J. Comput. Syst. Sci., 58(1):193–210, 1999.
doi:10.1006/jcss.1998.1605.

4 Sanjeev Arora, Satish Rao, and Umesh V. Vazirani. Expander flows, geometric embeddings and
graph partitioning. In László Babai, editor, Proceedings of the 36th Annual ACM Symposium
on Theory of Computing, Chicago, IL, USA, June 13-16, 2004, pages 222–231. ACM, 2004.
doi:10.1145/1007352.1007355.

5 Kevin Aydin, MohammadHossein Bateni, and Vahab S. Mirrokni. Distributed balanced
partitioning via linear embedding. Algorithms, 12(8):162, 2019. doi:10.3390/a12080162.

6 MohammadHossein Bateni, Soheil Behnezhad, Mahsa Derakhshan, MohammadTaghi
Hajiaghayi, Raimondas Kiveris, Silvio Lattanzi, and Vahab S. Mirrokni. Affinity clus-
tering: Hierarchical clustering at scale. In Isabelle Guyon, Ulrike von Luxburg, Samy
Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman Gar-
nett, editors, Advances in Neural Information Processing Systems 30: Annual Conference
on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA,
USA, pages 6864–6874, 2017. URL: https://proceedings.neurips.cc/paper/2017/hash/
2e1b24a664f5e9c18f407b2f9c73e821-Abstract.html.

https://arxiv.org/abs/1912.06983
http://proceedings.mlr.press/v125/alon20b.html
http://proceedings.mlr.press/v125/alon20b.html
https://doi.org/10.1006/jcss.1998.1605
https://doi.org/10.1145/1007352.1007355
https://doi.org/10.3390/a12080162
https://proceedings.neurips.cc/paper/2017/hash/2e1b24a664f5e9c18f407b2f9c73e821-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/2e1b24a664f5e9c18f407b2f9c73e821-Abstract.html

Y. Azar and D. Vainstein 13:17

7 Moses Charikar and Vaggos Chatziafratis. Approximate hierarchical clustering via sparsest cut
and spreading metrics. In Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2017, Barcelona, Spain, Hotel Porta Fira, January 16-19,
pages 841–854, 2017.

8 Moses Charikar, Vaggos Chatziafratis, and Rad Niazadeh. Hierarchical clustering better than
average-linkage. In Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2019, San Diego, California, USA, January 6-9, 2019, pages 2291–2304,
2019.

9 Moses Charikar, Vaggos Chatziafratis, Rad Niazadeh, and Grigory Yaroslavtsev. Hierarchical
clustering for euclidean data. In The 22nd International Conference on Artificial Intelligence
and Statistics, AISTATS 2019, 16-18 April 2019, Naha, Okinawa, Japan, pages 2721–2730,
2019. URL: http://proceedings.mlr.press/v89/charikar19a.html.

10 Moses Charikar, Mohammad Taghi Hajiaghayi, Howard J. Karloff, and Satish Rao. l22
spreading metrics for vertex ordering problems. In Proceedings of the Seventeenth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2006, Miami, Florida, USA, January
22-26, 2006, pages 1018–1027. ACM Press, 2006. URL: http://dl.acm.org/citation.cfm?
id=1109557.1109670.

11 Gui Citovsky, Giulia DeSalvo, Claudio Gentile, Lazaros Karydas, Anand Rajagopalan, Afshin
Rostamizadeh, and Sanjiv Kumar. Batch active learning at scale. CoRR, abs/2107.14263,
2021. arXiv:2107.14263.

12 Vincent Cohen-Addad, Varun Kanade, Frederik Mallmann-Trenn, and Claire Mathieu. Hier-
archical clustering: Objective functions and algorithms. In Proceedings of the Twenty-Ninth
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2018, New Orleans, LA, USA,
January 7-10, 2018, pages 378–397, 2018.

13 Sanjoy Dasgupta. A cost function for similarity-based hierarchical clustering. In Proceedings of
the 48th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2016, Cambridge,
MA, USA, June 18-21, 2016, pages 118–127, 2016.

14 Wenceslas Fernandez de la Vega and Marek Karpinski. Polynomial time approxima-
tion of dense weighted instances of MAX-CUT. Electron. Colloquium Comput. Complex.,
64, 1998. URL: https://eccc.weizmann.ac.il/eccc-reports/1998/TR98-064/index.html,
arXiv:TR98-064.

15 Wenceslas Fernandez de la Vega and Claire Kenyon. A randomized approximation scheme for
metric MAX-CUT. In 39th Annual Symposium on Foundations of Computer Science, FOCS
’98, November 8-11, 1998, Palo Alto, California, USA, pages 468–471. IEEE Computer Society,
1998. doi:10.1109/SFCS.1998.743497.

16 Guy Even, Joseph Naor, Satish Rao, and Baruch Schieber. Divide-and-conquer approximation
algorithms via spreading metrics (extended abstract). In 36th Annual Symposium on Founda-
tions of Computer Science, Milwaukee, Wisconsin, USA, 23-25 October 1995, pages 62–71.
IEEE Computer Society, 1995. doi:10.1109/SFCS.1995.492463.

17 Uriel Feige and James R. Lee. An improved approximation ratio for the minimum linear
arrangement problem. Inf. Process. Lett., 101(1):26–29, 2007. doi:10.1016/j.ipl.2006.07.
009.

18 Oded Goldreich, Shafi Goldwasser, and Dana Ron. Property testing and its connection to
learning and approximation. J. ACM, 45(4):653–750, 1998.

19 Mark D. Hansen. Approximation algorithms for geometric embeddings in the plane with
applications to parallel processing problems (extended abstract). In 30th Annual Symposium
on Foundations of Computer Science, Research Triangle Park, North Carolina, USA, 30
October - 1 November 1989, pages 604–609. IEEE Computer Society, 1989. doi:10.1109/
SFCS.1989.63542.

20 Refael Hassin and Shlomi Rubinstein. Approximation algorithms for maximum linear arrange-
ment. Inf. Process. Lett., 80(4):171–177, 2001. doi:10.1016/S0020-0190(01)00159-4.

ICALP 2023

http://proceedings.mlr.press/v89/charikar19a.html
http://dl.acm.org/citation.cfm?id=1109557.1109670
http://dl.acm.org/citation.cfm?id=1109557.1109670
https://arxiv.org/abs/2107.14263
https://eccc.weizmann.ac.il/eccc-reports/1998/TR98-064/index.html
https://arxiv.org/abs/TR98-064
https://doi.org/10.1109/SFCS.1998.743497
https://doi.org/10.1109/SFCS.1995.492463
https://doi.org/10.1016/j.ipl.2006.07.009
https://doi.org/10.1016/j.ipl.2006.07.009
https://doi.org/10.1109/SFCS.1989.63542
https://doi.org/10.1109/SFCS.1989.63542
https://doi.org/10.1016/S0020-0190(01)00159-4

13:18 Multi Layer Peeling for LA and HC

21 Marek Karpinski and Warren Schudy. Linear time approximation schemes for the gale-
berlekamp game and related minimization problems. In Michael Mitzenmacher, editor,
Proceedings of the 41st Annual ACM Symposium on Theory of Computing, STOC 2009,
Bethesda, MD, USA, May 31 - June 2, 2009, pages 313–322. ACM, 2009. doi:10.1145/
1536414.1536458.

22 Claire Kenyon-Mathieu and Warren Schudy. How to rank with few errors. In David S.
Johnson and Uriel Feige, editors, Proceedings of the 39th Annual ACM Symposium on Theory
of Computing, San Diego, California, USA, June 11-13, 2007, pages 95–103. ACM, 2007.
doi:10.1145/1250790.1250806.

23 Frank Thomson Leighton and Satish Rao. Multicommodity max-flow min-cut theorems
and their use in designing approximation algorithms. J. ACM, 46(6):787–832, 1999. doi:
10.1145/331524.331526.

24 Benjamin Moseley and Joshua Wang. Approximation bounds for hierarchical clustering:
Average linkage, bisecting k-means, and local search. In Advances in Neural Information
Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017,
4-9 December 2017, Long Beach, CA, USA, pages 3094–3103, 2017.

25 Stanislav Naumov, Grigory Yaroslavtsev, and Dmitrii Avdiukhin. Objective-based hierarch-
ical clustering of deep embedding vectors. In Thirty-Fifth AAAI Conference on Artificial
Intelligence, AAAI 2021, Thirty-Third Conference on Innovative Applications of Artificial
Intelligence, IAAI 2021, The Eleventh Symposium on Educational Advances in Artificial
Intelligence, EAAI 2021, Virtual Event, February 2-9, 2021, pages 9055–9063. AAAI Press,
2021. URL: https://ojs.aaai.org/index.php/AAAI/article/view/17094.

26 Anand Rajagopalan, Fabio Vitale, Danny Vainstein, Gui Citovsky, Cecilia M. Procopiuc, and
Claudio Gentile. Hierarchical clustering of data streams: Scalable algorithms and approximation
guarantees. In Marina Meila and Tong Zhang, editors, Proceedings of the 38th International
Conference on Machine Learning, ICML 2021, 18-24 July 2021, Virtual Event, volume
139 of Proceedings of Machine Learning Research, pages 8799–8809. PMLR, 2021. URL:
http://proceedings.mlr.press/v139/rajagopalan21a.html.

27 Satish Rao and Andréa W. Richa. New approximation techniques for some ordering problems.
In Howard J. Karloff, editor, Proceedings of the Ninth Annual ACM-SIAM Symposium on
Discrete Algorithms, 25-27 January 1998, San Francisco, California, USA, pages 211–218.
ACM/SIAM, 1998. URL: http://dl.acm.org/citation.cfm?id=314613.314703.

28 R. Ravi, Ajit Agrawal, and Philip N. Klein. Ordering problems approximated: Single-processor
scheduling and interval graph completion. In Javier Leach Albert, Burkhard Monien, and
Mario Rodríguez-Artalejo, editors, Automata, Languages and Programming, 18th International
Colloquium, ICALP91, Madrid, Spain, July 8-12, 1991, Proceedings, volume 510 of Lecture
Notes in Computer Science, pages 751–762. Springer, 1991. doi:10.1007/3-540-54233-7_180.

29 Paul D. Seymour. Packing directed circuits fractionally. Comb., 15(2):281–288, 1995. doi:
10.1007/BF01200760.

30 Baris Sumengen, Anand Rajagopalan, Gui Citovsky, David Simcha, Olivier Bachem, Pradipta
Mitra, Sam Blasiak, Mason Liang, and Sanjiv Kumar. Scaling hierarchical agglomerative
clustering to billion-sized datasets. CoRR, abs/2105.11653, 2021. arXiv:2105.11653.

31 Danny Vainstein, Vaggos Chatziafratis, Gui Citovsky, Anand Rajagopalan, Mohammad
Mahdian, and Yossi Azar. Hierarchical clustering via sketches and hierarchical correlation
clustering. In Arindam Banerjee and Kenji Fukumizu, editors, The 24th International Con-
ference on Artificial Intelligence and Statistics, AISTATS 2021, April 13-15, 2021, Virtual
Event, volume 130 of Proceedings of Machine Learning Research, pages 559–567. PMLR, 2021.
URL: http://proceedings.mlr.press/v130/vainstein21a.html.

https://doi.org/10.1145/1536414.1536458
https://doi.org/10.1145/1536414.1536458
https://doi.org/10.1145/1250790.1250806
https://doi.org/10.1145/331524.331526
https://doi.org/10.1145/331524.331526
https://ojs.aaai.org/index.php/AAAI/article/view/17094
http://proceedings.mlr.press/v139/rajagopalan21a.html
http://dl.acm.org/citation.cfm?id=314613.314703
https://doi.org/10.1007/3-540-54233-7_180
https://doi.org/10.1007/BF01200760
https://doi.org/10.1007/BF01200760
https://arxiv.org/abs/2105.11653
http://proceedings.mlr.press/v130/vainstein21a.html

	1 Introduction
	2 Multi-Layer Peeling Framework
	3 Notations and Preliminaries
	4 The Linear Arrangement Objective
	4.1 Defining the Algorithms
	4.1.1 Defining ALG
	4.1.2 Defining ALG_{d-w}

	4.2 Analyzing the Approximation Ratio of ALG
	4.2.1 Structural Lemmas
	4.2.2 Analyzing the Approximation Ratio of Case (a) of ALG
	4.2.3 Analyzing the Approximation Ratio of Case (b) of ALG
	4.2.4 Setting the Values alpha_i, beta_i and gamma_i
	4.2.5 Putting it all Together

	4.3 Analyzing the Running Time of ALG

	5 The Hierarchical Clustering Objective
	5.1 Defining the Algorithms
	5.1.1 Defining ALG
	5.1.2 Defining ALG_{d-w}

	5.2 Analyzing the Approximation Ratio of ALG
	5.2.1 Analyzing the Approximation Ratio of Case (a) of ALG
	5.2.2 Analyzing the Approximation Ratio of Case (b) of ALG
	5.2.3 Setting the Values alpha_i, beta_i and gamma_i
	5.2.4 Putting it all Together

	5.3 Analyzing the Running Time of ALG

