17 research outputs found

    Asymptotic Analysis of Double-Scattering Channels

    Full text link
    We consider a multiple-input multiple-output (MIMO) multiple access channel (MAC), where the channel between each transmitter and the receiver is modeled by the doubly-scattering channel model. Based on novel techniques from random matrix theory, we derive deterministic approximations of the mutual information, the signal-to-noise-plus-interference-ratio (SINR) at the output of the minimum-mean-square-error (MMSE) detector and the sum-rate with MMSE detection which are almost surely tight in the large system limit. Moreover, we derive the asymptotically optimal transmit covariance matrices. Our simulation results show that the asymptotic analysis provides very close approximations for realistic system dimensions.Comment: 5 pages, 2 figures, submitted to the Annual Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, CA, USA, 201

    On Outage Probability and Diversity-Multiplexing Tradeoff in MIMO Relay Channels

    Full text link
    Fading MIMO relay channels are studied analytically, when the source and destination are equipped with multiple antennas and the relays have a single one. Compact closed-form expressions are obtained for the outage probability under i.i.d. and correlated Rayleigh-fading links. Low-outage approximations are derived, which reveal a number of insights, including the impact of correlation, of the number of antennas, of relay noise and of relaying protocol. The effect of correlation is shown to be negligible, unless the channel becomes almost fully correlated. The SNR loss of relay fading channels compared to the AWGN channel is quantified. The SNR-asymptotic diversity-multiplexing tradeoff (DMT) is obtained for a broad class of fading distributions, including, as special cases, Rayleigh, Rice, Nakagami, Weibull, which may be non-identical, spatially correlated and/or non-zero mean. The DMT is shown to depend not on a particular fading distribution, but rather on its polynomial behavior near zero, and is the same for the simple "amplify-and-forward" protocol and more complicated "decode-and-forward" one with capacity achieving codes, i.e. the full processing capability at the relay does not help to improve the DMT. There is however a significant difference between the SNR-asymptotic DMT and the finite-SNR outage performance: while the former is not improved by using an extra antenna on either side, the latter can be significantly improved and, in particular, an extra antenna can be traded-off for a full processing capability at the relay. The results are extended to the multi-relay channels with selection relaying and typical outage events are identified.Comment: accepted by IEEE Trans. on Comm., 201

    Optimal space-time codes for the MIMO amplify-and-forward cooperative channel

    Full text link
    In this work, we extend the non-orthogonal amplify-and-forward (NAF) cooperative diversity scheme to the MIMO channel. A family of space-time block codes for a half-duplex MIMO NAF fading cooperative channel with N relays is constructed. The code construction is based on the non-vanishing determinant criterion (NVD) and is shown to achieve the optimal diversity-multiplexing tradeoff (DMT) of the channel. We provide a general explicit algebraic construction, followed by some examples. In particular, in the single relay case, it is proved that the Golden code and the 4x4 Perfect code are optimal for the single-antenna and two-antenna case, respectively. Simulation results reveal that a significant gain (up to 10dB) can be obtained with the proposed codes, especially in the single-antenna case.Comment: submitted to IEEE Transactions on Information Theory, revised versio

    Iterative Deterministic Equivalents for the Performance Analysis of Communication Systems

    Full text link
    In this article, we introduce iterative deterministic equivalents as a novel technique for the performance analysis of communication systems whose channels are modeled by complex combinations of independent random matrices. This technique extends the deterministic equivalent approach for the study of functionals of large random matrices to a broader class of random matrix models which naturally arise as channel models in wireless communications. We present two specific applications: First, we consider a multi-hop amplify-and-forward (AF) MIMO relay channel with noise at each stage and derive deterministic approximations of the mutual information after the Kth hop. Second, we study a MIMO multiple access channel (MAC) where the channel between each transmitter and the receiver is represented by the double-scattering channel model. We provide deterministic approximations of the mutual information, the signal-to-interference-plus-noise ratio (SINR) and sum-rate with minimum-mean-square-error (MMSE) detection and derive the asymptotically optimal precoding matrices. In both scenarios, the approximations can be computed by simple and provably converging fixed-point algorithms and are shown to be almost surely tight in the limit when the number of antennas at each node grows infinitely large. Simulations suggest that the approximations are accurate for realistic system dimensions. The technique of iterative deterministic equivalents can be easily extended to other channel models of interest and is, therefore, also a new contribution to the field of random matrix theory.Comment: submitted to the IEEE Transactions on Information Theory, 43 pages, 4 figure

    Second-Order Coding Rate of Quasi-Static Rayleigh-Product MIMO Channels

    Full text link
    With the development of innovative applications that require high reliability and low latency, ultra-reliable and low latency communications become critical for wireless networks. In this paper, the second-order coding rate of the coherent quasi-static Rayleigh-product MIMO channel is investigated. We consider the coding rate within O(1/\sqrt(Mn)) of the capacity, where M and n denote the number of transmit antennas and the blocklength, respectively, and derive the closed-form upper and lower bounds for the optimal average error probability. This analysis is achieved by setting up a central limit theorem (CLT) for the mutual information density (MID) with the assumption that the block-length, the number of the scatterers, and the number of the antennas go to infinity with the same pace. To obtain more physical insights, the high and low SNR approximations for the upper and lower bounds are also given. One interesting observation is that rank-deficiency degrades the performance of MIMO systems with FBL and the fundamental limits of the Rayleigh-product channel approaches those of the single Rayleigh case when the number of scatterers approaches infinity. Finally, the fitness of the CLT and the gap between the derived bounds and the performance of practical LDPC coding are illustrated by simulations
    corecore