128 research outputs found

    Distributed Quasi-Orthogonal Space-Time coding in wireless cooperative relay networks

    Get PDF
    Cooperative diversity provides a new paradigm in robust wireless re- lay networks that leverages Space-Time (ST) processing techniques to combat the effects of fading. Distributing the encoding over multiple relays that potentially observe uncorrelated channels to a destination terminal has demonstrated promising results in extending range, data- rates and transmit power utilization. Specifically, Space Time Block Codes (STBCs) based on orthogonal designs have proven extremely popular at exploiting spatial diversity through simple distributed pro- cessing without channel knowledge at the relaying terminals. This thesis aims at extending further the extensive design and analysis in relay networks based on orthogonal designs in the context of Quasi- Orthogonal Space Time Block Codes (QOSTBCs). The characterization of Quasi-Orthogonal MIMO channels for cooper- ative networks is performed under Ergodic and Non-Ergodic channel conditions. Specific to cooperative diversity, the sub-channels are as- sumed to observe different shadowing conditions as opposed to the traditional co-located communication system. Under Ergodic chan- nel assumptions novel closed-form solutions for cooperative channel capacity under the constraint of distributed-QOSTBC processing are presented. This analysis is extended to yield closed-form approx- imate expressions and their utility is verified through simulations. The effective use of partial feedback to orthogonalize the QOSTBC is examined and significant gains under specific channel conditions are demonstrated. Distributed systems cooperating over the network introduce chal- lenges in synchronization. Without extensive network management it is difficult to synchronize all the nodes participating in the relaying between source and destination terminals. Based on QOSTBC tech- niques simple encoding strategies are introduced that provide compa- rable throughput to schemes under synchronous conditions with neg- ligible overhead in processing throughout the protocol. Both mutli- carrier and single-carrier schemes are developed to enable the flexi- bility to limit Peak-to-Average-Power-Ratio (PAPR) and reduce the Radio Frequency (RF) requirements of the relaying terminals. The insights gained in asynchronous design in flat-fading cooperative channels are then extended to broadband networks over frequency- selective channels where the novel application of QOSTBCs are used in distributed-Space-Time-Frequency (STF) coding. Specifically, cod- ing schemes are presented that extract both spatial and mutli-path diversity offered by the cooperative Multiple-Input Multiple-Output (MIMO) channel. To provide maximum flexibility the proposed schemes are adapted to facilitate both Decode-and-Forward (DF) and Amplify- and-Forward (AF) relaying. In-depth Pairwise-Error-Probability (PEP) analysis provides distinct design specifications which tailor the distributed- STF code to maximize the diversity and coding gain offered under the DF and AF protocols. Numerical simulation are used extensively to confirm the validity of the proposed cooperative schemes. The analytical and numerical re- sults demonstrate the effective use of QOSTBC over orthogonal tech- niques in a wide range of channel conditions

    Air Interface for Next Generation Mobile Communication Networks: Physical Layer Design:A LTE-A Uplink Case Study

    Get PDF

    Evaluation Of Multicarrier Air Interfaces In The Presence Of Interference For L-Band And C-Band Air-Ground Communications

    Get PDF
    The use of aeronautical vehicles and systems is continuously growing, and this means current aeronautical communication systems, particularly those operating in the very high frequency (VHF) aviation band, will suffer from severe congestion in some regions of the world. For example, it is estimated that air-to-ground (AG) communication traffic density will at least double by 2035 over that in 2012, based on the most-likely growth scenario for Europe. This traffic growth (worldwide) has led civil aviation authorities such as the FAA in the USA, and EuroControl in Europe, to jointly explore development of future communication infrastructures (FCI). According to international aviation systems policies, both current and future AG communication systems will be deployed in L-band (960-1164 MHz), and possibly in C-band (5030-5091 GHz) because of the favorable AG radio propagation characteristics in these bands. During the same time period as the FCI studies, the use of multicarrier communication technologies has become very mature for terrestrial communication systems, but for AG systems it is still being studied and tested. Aiming toward future demands, EuroControl and FAA sponsored work to define several new candidate AG radio systems with high data rate and high reliability. Dominant among these is now an L-Band Digital Aeronautical Communication Systems (L-DACS): L-DACS1. L-DACS1 is a multicarrier communication system based on the popular orthogonal frequency division multiplexing (OFDM) modulation technique. For airport surface area communication systems used in C-band, EuroControl and FAA also proposed another OFDM communication system based on the IEEE 802.16e standard, termed aeronautical mobile airport communication system (AeroMACS). This system has been proposed to provide the growing need of communication traffic in airport environments. In this dissertation, first we review existing and proposed aviation communication systems in VHF-band, L-band and C-band. We then focus our study on the use of multicarrier techniques in these aviation bands. We compare the popular and dominant multicarrier technique OFDM (which is used in cellular networks such long-term evolution (LTE) and wireless local area networks such as Wi-Fi) with the filterbank multicarrier (FBMC) technique. As far as we are aware, we are the first to propose and evaluate FBMC for aviation communication systems. We show, using analysis and computer simulations, along with measurement based (NASA) air-ground and airport surface channel models, that FBMC offers advantages in performance over the OFDM schemes. Via use of sharp filters in the frequency domain, FBMC reduces out of band interference. Specifically, it is more robust to high-power distance measurement equipment (DME) interference, and via replacement of guard bands with data-bearing subcarriers, FBMC can offer higher throughput than the contending L-DACS1 scheme, by up to 23%. Similar advantages over AeroMACS pertain in the airport surface channel. Our FBMC bit error ratio performance is comparable to that of the OFDM schemes, and is even better for our “spectrally-shaped” version of FBMC. For these improvements, FBMC requires a modest complexity increase. Our final contribution in this dissertation is the presentation of spectrally shaped FBMC (SS-FBMC). This idea allocates unequal power to subcarriers to contend with non-white noise or non-white interference. Our adaptive algorithm selects a minimum number of guard subcarriers and then allocates power accordingly to remaining subcarriers based on a “water-filling-like” approach. We are the first to propose such a cognitive radio technique with FBMC for aviation applications. Results show that SSFBMC improves over FBMC in both performance and throughput

    Equalizador híbrido na banda das ondas milimétricas para sistemas GFDM

    Get PDF
    Wireless communication using very-large multiple-input multiple-output (MIMO) antennas has been regarded as one of the enabling technologies for the future mobile communication. It refers to the idea of equipping cellular base stations (BSs) with a very large number of antennas giving the possibility to focusing the transmitted signal energy into very short-range areas, which will provide huge improvements in the capacity, in addition to the spectral and energy efficiency. Concurrently, this demand for high data rates and capacity led to the necessity of exploiting the enormous amount of spectrum in the millimeter wave (mmWave) bands. However, the combination of millimeter-wave communications arrays with a massive number of antennas has the potential to dramatically enhance the features of wireless communication. This combination implies high cost and power consumption in the conventional full digital architecture, where each RF chain is dedicated to one antenna. The solution is the use of a hybrid architecture, where a small number of RF chains are connected to a large number of antennas through a network of phase shifters. On the other hand, another important factor that affect the transmission quality is the modulation technique, which plays an important role in the performance of the transmission process, for instance, GFDM is a flexible non-orthogonal multicarrier modulation concept, that introduces additional degrees of freedom when compared to other multicarrier techniques. This flexibility makes GFDM a promising solution for the future cellular generations, because it can achieve different requirements, such as higher spectrum efficiency, better control of out-of-band (OOB) emissions, as well as achieving low peak to average power ratio (PAPR). In this work, we present an analog-digital transmitter and receiver structures. Considering a GFDM modulation technique to be implemented in the digital part, while in the analog part, we propose a full connected hybrid multiuser linear equalizer, combined with low complexity hybrid precoder for wideband millimeter-wave massive MIMO systems. The hybrid equalizer is optimized by minimizing the mean square error between the hybrid approach and the full digital counterpart. The results show that the performance of the proposed hybrid scheme is very close to the full digital counterpart and the gap reduces as the number of RF chains increases.O uso de um número elevado de antenas, também designado por MIMO massivo, tem sido considerada uma das tecnologias mais promissoras para os futuros sistemas de comunicação sem fios. Esta tecnologia, refere-se à ideia de equipar as estações base (BSs) com um número muito grande de antenas, dando a possibilidade de focar a energia do sinal transmitido em áreas de alcance muito restritas, o que proporcionará grandes melhorias na capacidade, além das espectrais e eficiência energética. Simultaneamente, a exigência por taxas de dados elevadas e capacidade levou à necessidade de explorar uma enorme quantidade de espectro nas bandas de ondas milimétricas (mmWave). A combinação de comunicação na banda das ondas milimétricas com terminais equipados com um grande número de antenas tem o potencial de melhorar drasticamente os recursos da comunicação sem fios. Considerando no entanto uma arquitetura digital, usada em sistemas MIMO convencionais, em que cada cadeia de RF é dedicada a uma antena, implica um custo e um consumo de energia elevados. A solução é o uso de uma arquitetura híbrida, na qual um pequeno número de cadeias de RF é conectado a um grande número de antenas através de um conjunto de deslocadores de fase. Outro fator importante que afeta a qualidade da transmissão é a técnica de modulação usada, que desempenha um papel importante no desempenho do processo de transmissão. O GFDM é um conceito de modulação de portadora múltipla, não ortogonal e flexível, que introduz graus de liberdade adicionais, quando comparado a outras técnicas de portadora múltipla, como o OFDM. Essa flexibilidade faz do GFDM uma solução promissora para as futuras gerações celulares, pois pode atender a diferentes requisitos, como maior eficiência de espectro, melhor controle das emissões fora de banda (OOB), além de atingir baixo rácio de potência média / pico ( PAPR). Neste trabalho, é assumido uma arquitetura hibrida no transmissor e recetor. Considera-se uma técnica de modulação GFDM a ser implementada na parte digital, enquanto na parte analógica, é proposto um equalizador linear híbrido multiutilizador totalmente conectado, i.e., cada cadeia RF está ligada a todas as antenas, combinado com um pré-codificador híbrido, de baixa complexidade para sistemas MIMO massivo de banda larga. O equalizador híbrido é otimizado, minimizando o erro quadrático médio entre a abordagem híbrida e a contraparte totalmente digital. Os resultados mostram que o desempenho do esquema híbrido proposto está muito próximo do equivalente digital, à medida que o número de cadeias de RF aumenta.Mestrado em Engenharia Eletrónica e Telecomunicaçõe
    corecore