4 research outputs found

    Diversity Maximization in Doubling Metrics

    Get PDF
    Diversity maximization is an important geometric optimization problem with many applications in recommender systems, machine learning or search engines among others. A typical diversification problem is as follows: Given a finite metric space (X,d) and a parameter k in N, find a subset of k elements of X that has maximum diversity. There are many functions that measure diversity. One of the most popular measures, called remote-clique, is the sum of the pairwise distances of the chosen elements. In this paper, we present novel results on three widely used diversity measures: Remote-clique, remote-star and remote-bipartition. Our main result are polynomial time approximation schemes for these three diversification problems under the assumption that the metric space is doubling. This setting has been discussed in the recent literature. The existence of such a PTAS however was left open. Our results also hold in the setting where the distances are raised to a fixed power q >= 1, giving rise to more variants of diversity functions, similar in spirit to the variations of clustering problems depending on the power applied to the pairwise distances. Finally, we provide a proof of NP-hardness for remote-clique with squared distances in doubling metric spaces

    Fully dynamic clustering and diversity maximization in doubling metrics

    Full text link
    We present approximation algorithms for some variants of center-based clustering and related problems in the fully dynamic setting, where the pointset evolves through an arbitrary sequence of insertions and deletions. Specifically, we target the following problems: kk-center (with and without outliers), matroid-center, and diversity maximization. All algorithms employ a coreset-based strategy and rely on the use of the cover tree data structure, which we crucially augment to maintain, at any time, some additional information enabling the efficient extraction of the solution for the specific problem. For all of the aforementioned problems our algorithms yield (α+ε)(\alpha+\varepsilon)-approximations, where α\alpha is the best known approximation attainable in polynomial time in the standard off-line setting (except for kk-center with zz outliers where α=2\alpha = 2 but we get a (3+ε)(3+\varepsilon)-approximation) and ε>0\varepsilon>0 is a user-provided accuracy parameter. The analysis of the algorithms is performed in terms of the doubling dimension of the underlying metric. Remarkably, and unlike previous works, the data structure and the running times of the insertion and deletion procedures do not depend in any way on the accuracy parameter ε\varepsilon and, for the two kk-center variants, on the parameter kk. For spaces of bounded doubling dimension, the running times are dramatically smaller than those that would be required to compute solutions on the entire pointset from scratch. To the best of our knowledge, ours are the first solutions for the matroid-center and diversity maximization problems in the fully dynamic setting

    29th International Symposium on Algorithms and Computation: ISAAC 2018, December 16-19, 2018, Jiaoxi, Yilan, Taiwan

    Get PDF
    corecore