183 research outputs found

    On the DMT of TDD-SIMO Systems with Channel-Dependent Reverse Channel Training

    Full text link
    This paper investigates the Diversity-Multiplexing gain Trade-off (DMT) of a training based reciprocal Single Input Multiple Output (SIMO) system, with (i) perfect Channel State Information (CSI) at the Receiver (CSIR) and noisy CSI at the Transmitter (CSIT), and (ii) noisy CSIR and noisy CSIT. In both the cases, the CSIT is acquired through Reverse Channel Training (RCT), i.e., by sending a training sequence from the receiver to the transmitter. A channel-dependent fixed-power training scheme is proposed for acquiring CSIT, along with a forward-link data transmit power control scheme. With perfect CSIR, the proposed scheme is shown to achieve a diversity order that is quadratically increasing with the number of receive antennas. This is in contrast with conventional orthogonal RCT schemes, where the diversity order is known to saturate as the number of receive antennas is increased, for a given channel coherence time. Moreover, the proposed scheme can achieve a larger DMT compared to the orthogonal training scheme. With noisy CSIR and noisy CSIT, a three-way training scheme is proposed and its DMT performance is analyzed. It is shown that nearly the same diversity order is achievable as in the perfect CSIR case. The time-overhead in the training schemes is explicitly accounted for in this work, and the results show that the proposed channel-dependent RCT and data power control schemes offer a significant improvement in terms of the DMT, compared to channel-agnostic orthogonal RCT schemes. The outage performance of the proposed scheme is illustrated through Monte-Carlo simulations.Comment: Accepted for publication in IEEE Transactions on Communication

    Bits About the Channel: Multi-round Protocols for Two-way Fading Channels

    Full text link
    Most communication systems use some form of feedback, often related to channel state information. In this paper, we study diversity multiplexing tradeoff for both FDD and TDD systems, when both receiver and transmitter knowledge about the channel is noisy and potentially mismatched. For FDD systems, we first extend the achievable tradeoff region for 1.5 rounds of message passing to get higher diversity compared to the best known scheme, in the regime of higher multiplexing gains. We then break the mold of all current channel state based protocols by using multiple rounds of conferencing to extract more bits about the actual channel. This iterative refinement of the channel increases the diversity order with every round of communication. The protocols are on-demand in nature, using high powers for training and feedback only when the channel is in poor states. The key result is that the diversity multiplexing tradeoff with perfect training and K levels of perfect feedback can be achieved, even when there are errors in training the receiver and errors in the feedback link, with a multi-round protocol which has K rounds of training and K-1 rounds of binary feedback. The above result can be viewed as a generalization of Zheng and Tse, and Aggarwal and Sabharwal, where the result was shown to hold for K=1 and K=2 respectively. For TDD systems, we also develop new achievable strategies with multiple rounds of communication between the transmitter and the receiver, which use the reciprocity of the forward and the feedback channel. The multi-round TDD protocol achieves a diversity-multiplexing tradeoff which uniformly dominates its FDD counterparts, where no channel reciprocity is available.Comment: Submitted to IEEE Transactions on Information Theor

    Diversity Order Gain with Noisy Feedback in Multiple Access Channels

    Full text link
    In this paper, we study the effect of feedback channel noise on the diversity-multiplexing tradeoff in multiuser MIMO systems using quantized feedback, where each user has m transmit antennas and the base-station receiver has n antennas. We derive an achievable tradeoff and use it to show that in SNR-symmetric channels, a single bit of imperfect feedback is sufficient to double the maximum diversity order to 2mn compared to when there is no feedback (maximum is mn at multiplexing gain of zero). Further, additional feedback bits do not increase this maximum diversity order beyond 2mn. Finally, the above diversity order gain of mn over non-feedback systems can also be achieved for higher multiplexing gains, albeit requiring more than one bit of feedback.Comment: Proceedings of the 2008 IEEE International Symposium on Information Theory, Toronto, ON, Canada, July 6 - 11, 200

    Cognitive Orthogonal Precoder for Two-tiered Networks Deployment

    Full text link
    In this work, the problem of cross-tier interference in a two-tiered (macro-cell and cognitive small-cells) network, under the complete spectrum sharing paradigm, is studied. A new orthogonal precoder transmit scheme for the small base stations, called multi-user Vandermonde-subspace frequency division multiplexing (MU-VFDM), is proposed. MU-VFDM allows several cognitive small base stations to coexist with legacy macro-cell receivers, by nulling the small- to macro-cell cross-tier interference, without any cooperation between the two tiers. This cleverly designed cascaded precoder structure, not only cancels the cross-tier interference, but avoids the co-tier interference for the small-cell network. The achievable sum-rate of the small-cell network, satisfying the interference cancelation requirements, is evaluated for perfect and imperfect channel state information at the transmitter. Simulation results for the cascaded MU-VFDM precoder show a comparable performance to that of state-of-the-art dirty paper coding technique, for the case of a dense cellular layout. Finally, a comparison between MU-VFDM and a standard complete spectrum separation strategy is proposed. Promising gains in terms of achievable sum-rate are shown for the two-tiered network w.r.t. the traditional bandwidth management approach.Comment: 11 pages, 9 figures, accepted and to appear in IEEE Journal on Selected Areas in Communications: Cognitive Radio Series, 2013. Copyright transferred to IEE

    Ergodic Interference Alignment

    Full text link
    This paper develops a new communication strategy, ergodic interference alignment, for the K-user interference channel with time-varying fading. At any particular time, each receiver will see a superposition of the transmitted signals plus noise. The standard approach to such a scenario results in each transmitter-receiver pair achieving a rate proportional to 1/K its interference-free ergodic capacity. However, given two well-chosen time indices, the channel coefficients from interfering users can be made to exactly cancel. By adding up these two observations, each receiver can obtain its desired signal without any interference. If the channel gains have independent, uniform phases, this technique allows each user to achieve at least 1/2 its interference-free ergodic capacity at any signal-to-noise ratio. Prior interference alignment techniques were only able to attain this performance as the signal-to-noise ratio tended to infinity. Extensions are given for the case where each receiver wants a message from more than one transmitter as well as the "X channel" case (with two receivers) where each transmitter has an independent message for each receiver. Finally, it is shown how to generalize this strategy beyond Gaussian channel models. For a class of finite field interference channels, this approach yields the ergodic capacity region.Comment: 16 pages, 6 figure, To appear in IEEE Transactions on Information Theor

    Reinforcement-based data transmission in temporally-correlated fading channels: Partial CSIT scenario

    Get PDF
    Reinforcement algorithms refer to the schemes where the results of the previous trials and a reward-punishment rule are used for parameter setting in the next steps. In this paper, we use the concept of reinforcement algorithms to develop different data transmission models in wireless networks. Considering temporally-correlated fading channels, the results are presented for the cases with partial channel state information at the transmitter (CSIT). As demonstrated, the implementation of reinforcement algorithms improves the performance of communication setups remarkably, with the same feedback load/complexity as in the state-of-the-art schemes.Comment: Accepted for publication in ISWCS 201
    • …
    corecore