7 research outputs found

    Finding knowledge – what is it to ‘know’ when we search?

    Get PDF
    The issue of the epistemological implications of our social and technical interactions with information is the subject of this essay. This will be specified by looking at the role of the search engine as an informant, offering testimonial knowledge on a query; at the question of how the receiver of testimony should be taken into account by those giving the information; and how we should deal with multiplicity of perspectives, or indeed gaps in our knowledge. We should seek to understand the nature of ‘knowledge’, and how informants – including non-human informants – mediate our understanding of the world around us, and have always done so. This essay turns to these questions, discussing some issues with researching technological changes, and then what role search functions fulfill, and how such functions affect our own understanding of ‘knowledge’. Such an analysis has profound implications, for example in education. Under what circumstances do we accept that students ‘know’ something; how we do we decide that they know (that is, how do educators claim knowledge on their student’s knowledge states); but also what sort of knowledge is important important to know in such a situation, these are all important questions. Furthermore, how we think about the future of such technology and the ways that technology might change what we know (for better or worse) is important

    Semantic approaches to domain template construction and opinion mining from natural language

    Get PDF
    Most of the text mining algorithms in use today are based on lexical representation of input texts, for example bag of words. A possible alternative is to first convert text into a semantic representation, one that captures the text content in a structured way and using only a set of pre-agreed labels. This thesis explores the feasibility of such an approach to two tasks on collections of documents: identifying common structure in input documents (»domain template construction«), and helping users find differing opinions in input documents (»opinion mining«). We first discuss ways of converting natural text to a semantic representation. We propose and compare two new methods with varying degrees of target representation complexity. The first method, showing more promise, is based on dependency parser output which it converts to lightweight semantic frames, with role fillers aligned to WordNet. The second method structures text using Semantic Role Labeling techniques and aligns the output to the Cyc ontology.\ud Based on the first of the above representations, we next propose and evaluate two methods for constructing frame-based templates for documents from a given domain (e.g. bombing attack news reports). A template is the set of all salient attributes (e.g. attacker, number of casualties, \ldots). The idea of both methods is to construct abstract frames for which more specific instances (according to the WordNet hierarchy) can be found in the input documents. Fragments of these abstract frames represent the sought-for attributes. We achieve state of the art performance and additionally provide detailed type constraints for the attributes, something not possible with competing methods. Finally, we propose a software system for exposing differing opinions in the news. For any given event, we present the user with all known articles on the topic and let them navigate them by three semantic properties simultaneously: sentiment, topical focus and geography of origin. The result is a dynamically reranked set of relevant articles and a near real time focused summary of those articles. The summary, too, is computed from the semantic text representation discussed above. We conducted a user study of the whole system with very positive results

    Semantic approaches to domain template construction and opinion mining from natural language

    Get PDF
    Most of the text mining algorithms in use today are based on lexical representation of input texts, for example bag of words. A possible alternative is to first convert text into a semantic representation, one that captures the text content in a structured way and using only a set of pre-agreed labels. This thesis explores the feasibility of such an approach to two tasks on collections of documents: identifying common structure in input documents (»domain template construction«), and helping users find differing opinions in input documents (»opinion mining«). We first discuss ways of converting natural text to a semantic representation. We propose and compare two new methods with varying degrees of target representation complexity. The first method, showing more promise, is based on dependency parser output which it converts to lightweight semantic frames, with role fillers aligned to WordNet. The second method structures text using Semantic Role Labeling techniques and aligns the output to the Cyc ontology. Based on the first of the above representations, we next propose and evaluate two methods for constructing frame-based templates for documents from a given domain (e.g. bombing attack news reports). A template is the set of all salient attributes (e.g. attacker, number of casualties, \ldots). The idea of both methods is to construct abstract frames for which more specific instances (according to the WordNet hierarchy) can be found in the input documents. Fragments of these abstract frames represent the sought-for attributes. We achieve state of the art performance and additionally provide detailed type constraints for the attributes, something not possible with competing methods. Finally, we propose a software system for exposing differing opinions in the news. For any given event, we present the user with all known articles on the topic and let them navigate them by three semantic properties simultaneously: sentiment, topical focus and geography of origin. The result is a dynamically reranked set of relevant articles and a near real time focused summary of those articles. The summary, too, is computed from the semantic text representation discussed above. We conducted a user study of the whole system with very positive results

    Actes des 29es Journées Francophones d'Ingénierie des Connaissances, IC 2018

    Get PDF
    International audienc

    Multimodal Approach for Big Data Analytics and Applications

    Get PDF
    The thesis presents multimodal conceptual frameworks and their applications in improving the robustness and the performance of big data analytics through cross-modal interaction or integration. A joint interpretation of several knowledge renderings such as stream, batch, linguistics, visuals and metadata creates a unified view that can provide a more accurate and holistic approach to data analytics compared to a single standalone knowledge base. Novel approaches in the thesis involve integrating multimodal framework with state-of-the-art computational models for big data, cloud computing, natural language processing, image processing, video processing, and contextual metadata. The integration of these disparate fields has the potential to improve computational tools and techniques dramatically. Thus, the contributions place multimodality at the forefront of big data analytics; the research aims at mapping and under- standing multimodal correspondence between different modalities. The primary contribution of the thesis is the Multimodal Analytics Framework (MAF), a collaborative ensemble framework for stream and batch processing along with cues from multiple input modalities like language, visuals and metadata to combine benefits from both low-latency and high-throughput. The framework is a five-step process: Data ingestion. As a first step towards Big Data analytics, a high velocity, fault-tolerant streaming data acquisition pipeline is proposed through a distributed big data setup, followed by mining and searching patterns in it while data is still in transit. The data ingestion methods are demonstrated using Hadoop ecosystem tools like Kafka and Flume as sample implementations. Decision making on the ingested data to use the best-fit tools and methods. In Big Data Analytics, the primary challenges often remain in processing heterogeneous data pools with a one-method-fits all approach. The research introduces a decision-making system to select the best-fit solutions for the incoming data stream. This is the second step towards building a data processing pipeline presented in the thesis. The decision-making system introduces a Fuzzy Graph-based method to provide real-time and offline decision-making. Lifelong incremental machine learning. In the third step, the thesis describes a Lifelong Learning model at the processing layer of the analytical pipeline, following the data acquisition and decision making at step two for downstream processing. Lifelong learning iteratively increments the training model using a proposed Multi-agent Lambda Architecture (MALA), a collaborative ensemble architecture between the stream and batch data. As part of the proposed MAF, MALA is one of the primary contributions of the research.The work introduces a general-purpose and comprehensive approach in hybrid learning of batch and stream processing to achieve lifelong learning objectives. Improving machine learning results through ensemble learning. As an extension of the Lifelong Learning model, the thesis proposes a boosting based Ensemble method as the fourth step of the framework, improving lifelong learning results by reducing the learning error in each iteration of a streaming window. The strategy is to incrementally boost the learning accuracy on each iterating mini-batch, enabling the model to accumulate knowledge faster. The base learners adapt more quickly in smaller intervals of a sliding window, improving the machine learning accuracy rate by countering the concept drift. Cross-modal integration between text, image, video and metadata for more comprehensive data coverage than a text-only dataset. The final contribution of this thesis is a new multimodal method where three different modalities: text, visuals (image and video) and metadata, are intertwined along with real-time and batch data for more comprehensive input data coverage than text-only data. The model is validated through a detailed case study on the contemporary and relevant topic of the COVID-19 pandemic. While the remainder of the thesis deals with text-only input, the COVID-19 dataset analyzes both textual and visual information in integration. Post completion of this research work, as an extension to the current framework, multimodal machine learning is investigated as a future research direction
    corecore