12,900 research outputs found

    Accelerating Innovation Through Analogy Mining

    Full text link
    The availability of large idea repositories (e.g., the U.S. patent database) could significantly accelerate innovation and discovery by providing people with inspiration from solutions to analogous problems. However, finding useful analogies in these large, messy, real-world repositories remains a persistent challenge for either human or automated methods. Previous approaches include costly hand-created databases that have high relational structure (e.g., predicate calculus representations) but are very sparse. Simpler machine-learning/information-retrieval similarity metrics can scale to large, natural-language datasets, but struggle to account for structural similarity, which is central to analogy. In this paper we explore the viability and value of learning simpler structural representations, specifically, "problem schemas", which specify the purpose of a product and the mechanisms by which it achieves that purpose. Our approach combines crowdsourcing and recurrent neural networks to extract purpose and mechanism vector representations from product descriptions. We demonstrate that these learned vectors allow us to find analogies with higher precision and recall than traditional information-retrieval methods. In an ideation experiment, analogies retrieved by our models significantly increased people's likelihood of generating creative ideas compared to analogies retrieved by traditional methods. Our results suggest a promising approach to enabling computational analogy at scale is to learn and leverage weaker structural representations.Comment: KDD 201

    Deep Learning based Recommender System: A Survey and New Perspectives

    Full text link
    With the ever-growing volume of online information, recommender systems have been an effective strategy to overcome such information overload. The utility of recommender systems cannot be overstated, given its widespread adoption in many web applications, along with its potential impact to ameliorate many problems related to over-choice. In recent years, deep learning has garnered considerable interest in many research fields such as computer vision and natural language processing, owing not only to stellar performance but also the attractive property of learning feature representations from scratch. The influence of deep learning is also pervasive, recently demonstrating its effectiveness when applied to information retrieval and recommender systems research. Evidently, the field of deep learning in recommender system is flourishing. This article aims to provide a comprehensive review of recent research efforts on deep learning based recommender systems. More concretely, we provide and devise a taxonomy of deep learning based recommendation models, along with providing a comprehensive summary of the state-of-the-art. Finally, we expand on current trends and provide new perspectives pertaining to this new exciting development of the field.Comment: The paper has been accepted by ACM Computing Surveys. https://doi.acm.org/10.1145/328502

    Automatic subscriptions in publish-subscribe systems

    Get PDF
    In this paper, we describe how to automate the process of subscribing to complex publish-subscribe systems. We present a proof-of-concept prototype, in which we analyze Web browsing history to generate zero-click subscriptions to Web feeds and video news stories. Our experience so far indicates that user attention data is a promising source of data for automating the subscription process

    Diversity, Assortment, Dissimilarity, Variety: A Study of Diversity Measures Using Low Level Features for Video Retrieval

    Get PDF
    In this paper we present a number of methods for re-ranking video search results in order to introduce diversity into the set of search results. The usefulness of these approaches is evaluated in comparison with similarity based measures, for the TRECVID 2007 collection and tasks [11]. For the MAP of the search results we find that some of our approaches perform as well as similarity based methods. We also find that some of these results can improve the P@N values for some of the lower N values. The most successful of these approaches was then implemented in an interactive search system for the TRECVID 2008 interactive search tasks. The responses from the users indicate that they find the more diverse search results extremely useful

    Fairness of Exposure in Rankings

    Full text link
    Rankings are ubiquitous in the online world today. As we have transitioned from finding books in libraries to ranking products, jobs, job applicants, opinions and potential romantic partners, there is a substantial precedent that ranking systems have a responsibility not only to their users but also to the items being ranked. To address these often conflicting responsibilities, we propose a conceptual and computational framework that allows the formulation of fairness constraints on rankings in terms of exposure allocation. As part of this framework, we develop efficient algorithms for finding rankings that maximize the utility for the user while provably satisfying a specifiable notion of fairness. Since fairness goals can be application specific, we show how a broad range of fairness constraints can be implemented using our framework, including forms of demographic parity, disparate treatment, and disparate impact constraints. We illustrate the effect of these constraints by providing empirical results on two ranking problems.Comment: In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, London, UK, 201
    • ā€¦
    corecore