444 research outputs found

    Information field theory

    Full text link
    Non-linear image reconstruction and signal analysis deal with complex inverse problems. To tackle such problems in a systematic way, I present information field theory (IFT) as a means of Bayesian, data based inference on spatially distributed signal fields. IFT is a statistical field theory, which permits the construction of optimal signal recovery algorithms even for non-linear and non-Gaussian signal inference problems. IFT algorithms exploit spatial correlations of the signal fields and benefit from techniques developed to investigate quantum and statistical field theories, such as Feynman diagrams, re-normalisation calculations, and thermodynamic potentials. The theory can be used in many areas, and applications in cosmology and numerics are presented.Comment: 8 pages, in-a-nutshell introduction to information field theory (see http://www.mpa-garching.mpg.de/ift), accepted for the proceedings of MaxEnt 2012, the 32nd International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineerin

    On Novel Approaches to Model-Based Structural Health Monitoring

    Get PDF
    Structural health monitoring (SHM) strategies have classically fallen into two main categories of approach: model-driven and data-driven methods. The former utilises physics-based models and inverse techniques as a method for inferring the health state of a structure from changes to updated parameters; hence defined as inverse model-driven approaches. The other frames SHM within a statistical pattern recognition paradigm. These methods require no physical modelling, instead inferring relationships between data and health states directly. Although successes with both approaches have been made, they both suffer from significant drawbacks, namely parameter estimation and interpretation difficulties within the inverse model-driven framework, and a lack of available full-system damage state data for data-driven techniques. Consequently, this thesis seeks to outline and develop a framework for an alternative category of approach; forward model-driven SHM. This class of strategies utilise calibrated physics-based models, in a forward manner, to generate health state data (i.e. the undamaged condition and damage states of interest) for training machine learning or pattern recognition technologies. As a result the framework seeks to provide potential solutions to these issues by removing the need for making health decisions from updated parameters and providing a mechanism for obtaining health state data. In light of this objective, a framework for forward model-driven SHM is established, highlighting key challenges and technologies that are required for realising this category of approach. The framework is constructed from two main components: generating physics-based models that accurately predict outputs under various damage scenarios, and machine learning methods used to infer decision bounds. This thesis deals with the former, developing technologies and strategies for producing statistically representative predictions from physics-based models. Specifically this work seeks to define validation within this context and propose a validation strategy, develop technologies that infer uncertainties from various sources, including model discrepancy, and offer a solution to the issue of validating full-system predictions when data is not available at this level. The first section defines validation within a forward model-driven context, offering a strategy of hypothesis testing, statistical distance metrics, visualisation tools, such as the witness function, and deterministic metrics. The statistical distances field is shown to provide a wealth of potential validation metrics that consider whole probability distributions. Additionally, existing validation metrics can be categorised within this fields terminology, providing greater insight. In the second part of this study emulator technologies, specifically Gaussian Process (GP) methods, are discussed. Practical implementation considerations are examined, including the establishment of validation and diagnostic techniques. Various GP extensions are outlined, with particular focus on technologies for dealing with large data sets and their applicability as emulators. Utilising these technologies two techniques for calibrating models, whilst accounting for and inferring model discrepancies, are demonstrated: Bayesian Calibration and Bias Correction (BCBC) and Bayesian History Matching (BHM). Both methods were applied to representative building structures in order to demonstrate their effectiveness within a forward model-driven SHM strategy. Sequential design heuristics were developed for BHM along with an importance sampling based technique for inferring the functional model discrepancy uncertainties. The third body of work proposes a multi-level uncertainty integration strategy by developing a subfunction discrepancy approach. This technique seeks to construct a methodology for producing valid full-system predictions through a combination of validated sub-system models where uncertainties and model discrepancy have been quantified. This procedure is demonstrated on a numerical shear structure where it is shown to be effective. Finally, conclusions about the aforementioned technologies are provided. In addition, a review of the future directions for forward model-driven SHM are outlined with the hope that this category receives wider investigation within the SHM community

    Statistical computation with kernels

    Get PDF
    Modern statistical inference has seen a tremendous increase in the size and complexity of models and datasets. As such, it has become reliant on advanced com- putational tools for implementation. A first canonical problem in this area is the numerical approximation of integrals of complex and expensive functions. Numerical integration is required for a variety of tasks, including prediction, model comparison and model choice. A second canonical problem is that of statistical inference for models with intractable likelihoods. These include models with intractable normal- isation constants, or models which are so complex that their likelihood cannot be evaluated, but from which data can be generated. Examples include large graphical models, as well as many models in imaging or spatial statistics. This thesis proposes to tackle these two problems using tools from the kernel methods and Bayesian non-parametrics literature. First, we analyse a well-known algorithm for numerical integration called Bayesian quadrature, and provide consis- tency and contraction rates. The algorithm is then assessed on a variety of statistical inference problems, and extended in several directions in order to reduce its compu- tational requirements. We then demonstrate how the combination of reproducing kernels with Stein’s method can lead to computational tools which can be used with unnormalised densities, including numerical integration and approximation of probability measures. We conclude by studying two minimum distance estimators derived from kernel-based statistical divergences which can be used for unnormalised and generative models. In each instance, the tractability provided by reproducing kernels and their properties allows us to provide easily-implementable algorithms whose theoretical foundations can be studied in depth

    The Bayesian Learning Rule

    Full text link
    We show that many machine-learning algorithms are specific instances of a single algorithm called the Bayesian learning rule. The rule, derived from Bayesian principles, yields a wide-range of algorithms from fields such as optimization, deep learning, and graphical models. This includes classical algorithms such as ridge regression, Newton's method, and Kalman filter, as well as modern deep-learning algorithms such as stochastic-gradient descent, RMSprop, and Dropout. The key idea in deriving such algorithms is to approximate the posterior using candidate distributions estimated by using natural gradients. Different candidate distributions result in different algorithms and further approximations to natural gradients give rise to variants of those algorithms. Our work not only unifies, generalizes, and improves existing algorithms, but also helps us design new ones

    Beta Diffusion

    Full text link
    We introduce beta diffusion, a novel generative modeling method that integrates demasking and denoising to generate data within bounded ranges. Using scaled and shifted beta distributions, beta diffusion utilizes multiplicative transitions over time to create both forward and reverse diffusion processes, maintaining beta distributions in both the forward marginals and the reverse conditionals, given the data at any point in time. Unlike traditional diffusion-based generative models relying on additive Gaussian noise and reweighted evidence lower bounds (ELBOs), beta diffusion is multiplicative and optimized with KL-divergence upper bounds (KLUBs) derived from the convexity of the KL divergence. We demonstrate that the proposed KLUBs are more effective for optimizing beta diffusion compared to negative ELBOs, which can also be derived as the KLUBs of the same KL divergence with its two arguments swapped. The loss function of beta diffusion, expressed in terms of Bregman divergence, further supports the efficacy of KLUBs for optimization. Experimental results on both synthetic data and natural images demonstrate the unique capabilities of beta diffusion in generative modeling of range-bounded data and validate the effectiveness of KLUBs in optimizing diffusion models, thereby making them valuable additions to the family of diffusion-based generative models and the optimization techniques used to train them
    • …
    corecore