13 research outputs found

    Dithering by Differences of Convex Functions

    Get PDF
    Motivated by a recent halftoning method which is based on electrostatic principles, we analyse a halftoning framework where one minimizes a functional consisting of the difference of two convex functions (DC). One of them describes attracting forces caused by the image gray values, the other one enforces repulsion between points. In one dimension, the minimizers of our functional can be computed analytically and have the following desired properties: the points are pairwise distinct, lie within the image frame and can be placed at grid points. In the two-dimensional setting, we prove some useful properties of our functional like its coercivity and suggest to compute a minimizer by a forward-backward splitting algorithm. We show that the sequence produced by such an algorithm converges to a critical point of our functional. Furthermore, we suggest to compute the special sums occurring in each iteration step by a fast summation technique based on the fast Fourier transform at non-equispaced knots which requires only Ο(m log(m)) arithmetic operations for m points. Finally, we present numerical results showing the excellent performance of our DC dithering method

    A projection method on measures sets

    Get PDF
    We consider the problem of projecting a probability measure π on a set MN of Radon measures. The projection is defined as a solution of the following variational problem: inf ”∈M N h (” − π) 2 2 , where h ∈ L 2 (℩) is a kernel, ℩ ⊂ R d and denotes the convolution operator. To motivate and illustrate our study, we show that this problem arises naturally in various practical image rendering problems such as stippling (representing an image with N dots) or continuous line drawing (representing an image with a continuous line). We provide a necessary and sufficient condition on the sequence (MN) N ∈N that ensures weak convergence of the projections (” * N) N ∈N to π. We then provide a numerical algorithm to solve a discretized version of the problem and show several illustrations related to computer-assisted synthesis of artistic paintings/drawings

    A projection algorithm on measures sets

    Get PDF
    We consider the problem of projecting a probability measure π\pi on a set MN\mathcal{M}_N of Radon measures. The projection is defined as a solution of the following variational problem:\begin{equation*}\inf_{\mu\in \mathcal{M}_N} \|h\star (\mu - \pi)\|_2^2,\end{equation*}where h∈L2(Ω)h\in L^2(\Omega) is a kernel, Ω⊂Rd\Omega\subset \R^d and ⋆\star denotes the convolution operator.To motivate and illustrate our study, we show that this problem arises naturally in various practical image rendering problems such as stippling (representing an image with NN dots) or continuous line drawing (representing an image with a continuous line).We provide a necessary and sufficient condition on the sequence (MN)N∈N(\mathcal{M}_N)_{N\in \N} that ensures weak convergence of the projections (ÎŒN∗)N∈N(\mu^*_N)_{N\in \N} to π\pi.We then provide a numerical algorithm to solve a discretized version of the problem and show several illustrations related to computer-assisted synthesis of artistic paintings/drawings

    Consistency of Probability Measure Quantization by Means of Power Repulsion–Attraction Potentials

    Get PDF
    This paper is concerned with the study of the consistency of a variational method for probability measure quantization, deterministically realized by means of a minimizing principle, balancing power repulsion and attraction potentials. The proof of consistency is based on the construction of a target energy functional whose unique minimizer is actually the given probability measure ωω to be quantized. Then we show that the discrete functionals, defining the discrete quantizers as their minimizers, actually Γ-converge to the target energy with respect to the narrow topology on the space of probability measures. A key ingredient is the reformulation of the target functional by means of a Fourier representation, which extends the characterization of conditionally positive semi-definite functions from points in generic position to probability measures. As a byproduct of the Fourier representation, we also obtain compactness of sublevels of the target energy in terms of uniform moment bounds, which already found applications in the asymptotic analysis of corresponding gradient flows. To model situations where the given probability is affected by noise, we further consider a modified energy, with the addition of a regularizing total variation term and we investigate again its point mass approximations in terms of Γ-convergence. We show that such a discrete measure representation of the total variation can be interpreted as an additional nonlinear potential, repulsive at a short range, attractive at a medium range, and at a long range not having effect, promoting a uniform distribution of the point masses.Austrian Science Fund (START project

    Optimizing full 3D SPARKLING trajectories for high-resolution T2*-weighted Magnetic Resonance Imaging

    Get PDF
    International audienceThe Spreading Projection Algorithm for Rapid K-space samplING, or SPARKLING, is an optimization-driven method that has been recently introduced for accelerated 2D T2*-w MRI using compressed sensing. It has then been extended to address 3D imaging using either stacks of 2D sampling patterns or a local 3D strategy that optimizes a single sampling trajectory at a time. 2D SPARKLING actually performs variable density sampling (VDS) along a prescribed target density while maximizing sampling efficiency and meeting the gradient-based hardware constraints. However, 3D SPARKLING has remained limited in terms of acceleration factors along the third dimension if one wants to preserve a peaky point spread function (PSF) and thus good image quality.In this paper, in order to achieve higher acceleration factors in 3D imaging while preserving image quality, we propose a new efficient algorithm that performs optimization on full 3D SPARKLING. The proposed implementation based on fast multipole methods (FMM) allows us to design sampling patterns with up to 10^7 k-space samples, thus opening the door to 3D VDS. We compare multi-CPU and GPU implementations and demonstrate that the latter is optimal for 3D imaging in the high-resolution acquisition regime (600”m isotropic). Finally, we show that this novel optimization for full 3D SPARKLING outperforms stacking strategies or 3D twisted projection imaging through retrospective and prospective studies on NIST phantom and in vivo brain scans at 3 Tesla. Overall the proposed method allows for 2.5-3.75x shorter scan times compared to GRAPPA-4 parallel imaging acquisition at 3 Tesla without compromising image quality
    corecore