137,212 research outputs found

    Maximum-a-posteriori estimation with Bayesian confidence regions

    Full text link
    Solutions to inverse problems that are ill-conditioned or ill-posed may have significant intrinsic uncertainty. Unfortunately, analysing and quantifying this uncertainty is very challenging, particularly in high-dimensional problems. As a result, while most modern mathematical imaging methods produce impressive point estimation results, they are generally unable to quantify the uncertainty in the solutions delivered. This paper presents a new general methodology for approximating Bayesian high-posterior-density credibility regions in inverse problems that are convex and potentially very high-dimensional. The approximations are derived by using recent concentration of measure results related to information theory for log-concave random vectors. A remarkable property of the approximations is that they can be computed very efficiently, even in large-scale problems, by using standard convex optimisation techniques. In particular, they are available as a by-product in problems solved by maximum-a-posteriori estimation. The approximations also have favourable theoretical properties, namely they outer-bound the true high-posterior-density credibility regions, and they are stable with respect to model dimension. The proposed methodology is illustrated on two high-dimensional imaging inverse problems related to tomographic reconstruction and sparse deconvolution, where the approximations are used to perform Bayesian hypothesis tests and explore the uncertainty about the solutions, and where proximal Markov chain Monte Carlo algorithms are used as benchmark to compute exact credible regions and measure the approximation error

    Random projections for Bayesian regression

    Get PDF
    This article deals with random projections applied as a data reduction technique for Bayesian regression analysis. We show sufficient conditions under which the entire dd-dimensional distribution is approximately preserved under random projections by reducing the number of data points from nn to kO(poly(d/ε))k\in O(\operatorname{poly}(d/\varepsilon)) in the case ndn\gg d. Under mild assumptions, we prove that evaluating a Gaussian likelihood function based on the projected data instead of the original data yields a (1+O(ε))(1+O(\varepsilon))-approximation in terms of the 2\ell_2 Wasserstein distance. Our main result shows that the posterior distribution of Bayesian linear regression is approximated up to a small error depending on only an ε\varepsilon-fraction of its defining parameters. This holds when using arbitrary Gaussian priors or the degenerate case of uniform distributions over Rd\mathbb{R}^d for β\beta. Our empirical evaluations involve different simulated settings of Bayesian linear regression. Our experiments underline that the proposed method is able to recover the regression model up to small error while considerably reducing the total running time

    Cluster Variation Method in Statistical Physics and Probabilistic Graphical Models

    Full text link
    The cluster variation method (CVM) is a hierarchy of approximate variational techniques for discrete (Ising--like) models in equilibrium statistical mechanics, improving on the mean--field approximation and the Bethe--Peierls approximation, which can be regarded as the lowest level of the CVM. In recent years it has been applied both in statistical physics and to inference and optimization problems formulated in terms of probabilistic graphical models. The foundations of the CVM are briefly reviewed, and the relations with similar techniques are discussed. The main properties of the method are considered, with emphasis on its exactness for particular models and on its asymptotic properties. The problem of the minimization of the variational free energy, which arises in the CVM, is also addressed, and recent results about both provably convergent and message-passing algorithms are discussed.Comment: 36 pages, 17 figure

    A Birthday Repetition Theorem and Complexity of Approximating Dense CSPs

    Get PDF
    A (k×l)(k \times l)-birthday repetition Gk×l\mathcal{G}^{k \times l} of a two-prover game G\mathcal{G} is a game in which the two provers are sent random sets of questions from G\mathcal{G} of sizes kk and ll respectively. These two sets are sampled independently uniformly among all sets of questions of those particular sizes. We prove the following birthday repetition theorem: when G\mathcal{G} satisfies some mild conditions, val(Gk×l)val(\mathcal{G}^{k \times l}) decreases exponentially in Ω(kl/n)\Omega(kl/n) where nn is the total number of questions. Our result positively resolves an open question posted by Aaronson, Impagliazzo and Moshkovitz (CCC 2014). As an application of our birthday repetition theorem, we obtain new fine-grained hardness of approximation results for dense CSPs. Specifically, we establish a tight trade-off between running time and approximation ratio for dense CSPs by showing conditional lower bounds, integrality gaps and approximation algorithms. In particular, for any sufficiently large ii and for every k2k \geq 2, we show the following results: - We exhibit an O(q1/i)O(q^{1/i})-approximation algorithm for dense Max kk-CSPs with alphabet size qq via Ok(i)O_k(i)-level of Sherali-Adams relaxation. - Through our birthday repetition theorem, we obtain an integrality gap of q1/iq^{1/i} for Ω~k(i)\tilde\Omega_k(i)-level Lasserre relaxation for fully-dense Max kk-CSP. - Assuming that there is a constant ϵ>0\epsilon > 0 such that Max 3SAT cannot be approximated to within (1ϵ)(1-\epsilon) of the optimal in sub-exponential time, our birthday repetition theorem implies that any algorithm that approximates fully-dense Max kk-CSP to within a q1/iq^{1/i} factor takes (nq)Ω~k(i)(nq)^{\tilde \Omega_k(i)} time, almost tightly matching the algorithmic result based on Sherali-Adams relaxation.Comment: 45 page
    corecore