1,431 research outputs found

    Distributionally Robust Chance Constrained Data-enabled Predictive Control

    Full text link
    We study the problem of finite-time constrained optimal control of unknown stochastic linear time-invariant systems, which is the key ingredient of a predictive control algorithm -- albeit typically having access to a model. We propose a novel distributionally robust data-enabled predictive control (DeePC) algorithm which uses noise-corrupted input/output data to predict future trajectories and compute optimal control inputs while satisfying output chance constraints. The algorithm is based on (i) a non-parametric representation of the subspace spanning the system behaviour, where past trajectories are sorted in Page or Hankel matrices; and (ii) a distributionally robust optimization formulation which gives rise to strong probabilistic performance guarantees. We show that for certain objective functions, DeePC exhibits strong out-of-sample performance, and at the same time respects constraints with high probability. The algorithm provides an end-to-end approach to control design for unknown stochastic linear time-invariant systems. We illustrate the closed-loop performance of the DeePC in an aerial robotics case study

    Stochastic Optimal Power Flow Based on Data-Driven Distributionally Robust Optimization

    Full text link
    We propose a data-driven method to solve a stochastic optimal power flow (OPF) problem based on limited information about forecast error distributions. The objective is to determine power schedules for controllable devices in a power network to balance operation cost and conditional value-at-risk (CVaR) of device and network constraint violations. These decisions include scheduled power output adjustments and reserve policies, which specify planned reactions to forecast errors in order to accommodate fluctuating renewable energy sources. Instead of assuming the uncertainties across the networks follow prescribed probability distributions, we assume the distributions are only observable through a finite training dataset. By utilizing the Wasserstein metric to quantify differences between the empirical data-based distribution and the real data-generating distribution, we formulate a distributionally robust optimization OPF problem to search for power schedules and reserve policies that are robust to sampling errors inherent in the dataset. A simple numerical example illustrates inherent tradeoffs between operation cost and risk of constraint violation, and we show how our proposed method offers a data-driven framework to balance these objectives

    Data-Driven Chance Constrained Optimization under Wasserstein Ambiguity Sets

    Get PDF
    We present a data-driven approach for distributionally robust chance constrained optimization problems (DRCCPs). We consider the case where the decision maker has access to a finite number of samples or realizations of the uncertainty. The chance constraint is then required to hold for all distributions that are close to the empirical distribution constructed from the samples (where the distance between two distributions is defined via the Wasserstein metric). We first reformulate DRCCPs under data-driven Wasserstein ambiguity sets and a general class of constraint functions. When the feasibility set of the chance constraint program is replaced by its convex inner approximation, we present a convex reformulation of the program and show its tractability when the constraint function is affine in both the decision variable and the uncertainty. For constraint functions concave in the uncertainty, we show that a cutting-surface algorithm converges to an approximate solution of the convex inner approximation of DRCCPs. Finally, for constraint functions convex in the uncertainty, we compare the feasibility set with other sample-based approaches for chance constrained programs.Comment: A shorter version is submitted to the American Control Conference, 201
    • …
    corecore