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Consistency of Distributionally Robust Risk- and
Chance-Constrained Optimization Under

Wasserstein Ambiguity Sets
Ashish Cherukuri , Member, IEEE , and Ashish R. Hota , Member, IEEE

Abstract—We study stochastic optimization problems
with chance and risk constraints, where in the latter, risk is
quantified in terms of the conditional value-at-risk (CVaR).
We consider the distributionally robust versions of these
problems, where the constraints are required to hold for a
family of distributions constructed from the observed real-
izations of the uncertainty via the Wasserstein distance. Our
main results establish that if the samples are drawn inde-
pendently from an underlying distribution and the problems
satisfy suitable technical assumptions, then the optimal
value and optimizers of the distributionally robust versions
of these problems converge to the respective quantities of
the original problems, as the sample size increases.

Index Terms—Optimization, stochastic systems.

I. INTRODUCTION

OPTIMIZATION problems under uncertain constraints are
pervasive in engineering applications. In the paradigm

of chance-constrained programs (CCPs), uncertain parameters
are treated as random variables and the uncertain constraints
are required to be satisfied with a high probability. However,
the feasibility set of a CCP is in general non-convex [1].
Furthermore, although the probability of constraint violation
is required to be small, the magnitude of constraint violation
could potentially be unbounded which is not desirable.

Consequently, recent approaches model uncertain con-
straints via coherent risk measures that preserve analyt-
ical tractability; specifically the conditional value-at-risk
(CVaR) [2], [3]. In contrast with chance constraints, (i)
CVaR preserves the convexity of the feasibility set, (ii) it
requires the magnitude of constraint violation to be bounded
in expectation (to be made more precise in Section II-A), and
(iii) CVaR constraints provide a convex inner approximation
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of chance constraints [1]. Accordingly, CVaR-constrained
programs (referred to as risk-constrained programs (RCPs))
have seen widespread applications in financial engineering [4],
stochastic optimal control [5]–[7], safety-critical control appli-
cations [8], robotics [9] and energy systems [10].

In order to solve stochastic optimization problems in gen-
eral and CCPs and RCPs in particular, the decision maker
needs to know the probability distribution of uncertain param-
eters. In practice, this information is often unavailable and
instead, the decision maker has access to data about the
uncertainty in the form of samples. Accordingly, recent work
has focused on constructing a family of probability dis-
tributions or an ambiguity set from the observed samples
followed by solving the uncertain optimization problem in
a worst-case sense for all distributions in the ambiguity
set. This approach is referred to as distributionally robust
optimization. Within this paradigm, ambiguity sets defined
via the Wasserstein distance (see Section II for the definition)
have been shown to have desirable out-of-sample performance
and analytical tractability [11]–[13]. Motivated by these attrac-
tive features, several recent works have proposed approxi-
mations and finite-dimensional reformulations of Wasserstein
distributionally robust chance and CVaR constrained pro-
grams [13]–[16]. This class of problems have also been
studied in the context of statistical learning [17], data-driven
control [18], [19], and optimal power flow [20], among
others.

Note that the Wasserstein ambiguity set is defined directly
in terms of the available samples that are drawn from an
underlying data-generating distribution. Consequently, the dis-
tributionally robust problem instance is a random instance of
the original CCP (or RCP) defined in terms of the underlying
distribution. Therefore, in addition to analytical tractability and
finite sample guarantees, it is desirable to analyze how well
the optimal solution of the (random) distributionally robust
program approximates the optimal solution of the original
CCP (or RCP); particularly in the regime when the number of
samples grows to infinity. This property is termed as asymp-
totic consistency in stochastic programming. While asymptotic
consistency has been established for Wasserstein distribution-
ally robust optimization problems [12], analogous results for
chance- and risk-constrained programs have not been explored
in the prior work.
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See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Groningen. Downloaded on June 24,2021 at 14:23:27 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0002-7609-5080
https://orcid.org/0000-0003-0562-0594


1730 IEEE CONTROL SYSTEMS LETTERS, VOL. 5, NO. 5, NOVEMBER 2021

In this letter, we show under suitable assumptions that if the
samples are being drawn from an underlying distribution P,
then the optimal solution and optimizers of the distributionally
robust CCP or RCP converge to the corresponding quantities
of the CCP or RCP (defined with respect to P), as the number
of samples increases and the size of the ambiguity set shrinks.
We show that the convergence of the optimal values is from
above if the rate at which the ambiguity set shrinks is cho-
sen carefully. Our results provide the much needed asymptotic
theoretical justification for Wasserstein distributionally robust
constrained optimization programs.

Notation: The sets of real, positive real, non-negative real,
and natural numbers are denoted by R, R>0, R≥0, and N,
respectively. The extended reals are R = R ∪ {−∞,∞}. For
N ∈ N, we let [N] := {1, 2, . . . , N}. For brevity, we denote
max(x, 0) by x+. The closure of a set S is denoted by cl(S).
For a set S and N ∈ N, we denote the N-fold cartesian product
as SN := �N

i=1S . Similar notation holds for the N-fold product
of any probability distribution.

II. TECHNICAL PRELIMINARIES

Here we formally define the notion of CVaR, Wasserstein
distance, and data-driven ambiguity sets.

A. (Conditional) Value-at-Risk

Let Y be a (real-valued) random variable with distribution
P. For a tolerance level α ∈ (0, 1), the value-at-risk (VaR) of
Y at level α is

VaRP

α(Y) := inf{y ∈ R | P(Y ≤ y) ≥ 1 − α}. (1)

That is, it is the (1 − α)-quantile of the distribution of Y . The
conditional value-at-risk (CVaR) of Y at level α is

CVaRP

α(Y) := inf
t∈R {α−1

EP[(Y + t)+] − t}. (2)

If Y has a continuous distribution, then CVaRP

α(Y) =
EP[Y|Y ≥ VaRP

α(Y)], i.e., it is the conditional expectation of
Y given that Y exceeds VaRP

α(Y).

B. Wasserstein Ambiguity Sets

Assume � ⊆ R
m and d to be a complete metric on �.

Let B(�) and P(�) be the Borel σ -algebra and the set of
Borel probability measures on �, resp. Let P1(�) ⊆ P(�) be
the set of measures with finite first moment. Following [12],
the 1-Wasserstein distance between any two measures μ, ν ∈
P1(�) is

W1(μ, ν) := min
γ∈H(μ,ν)

{∫
�×�

d(ξ, ω)γ (dξ, dω)

}
, (3)

where H(μ, ν) is the set of all distributions on � × � with
marginals μ and ν. The minimum in (3) is attained because
the metric d is continuous [11].

We consider ambiguity sets containing distributions close
to the empirical distribution induced by the observed samples.
Specifically, let P̂N := 1

N

∑N
i=1 δ̂ξi

be the empirical distribution
constructed from samples {̂ξi}i∈[N], where δ̂ξi

is the unit point

mass at ξ̂i. We define the data-driven Wasserstein ambiguity
set as

Mθ
N := {μ ∈ P1(�) | W1(μ, P̂N) ≤ θ}, (4)

which contains all distributions with finite first moment that
are within a distance θ ≥ 0 of P̂N . In [21], it was shown that
Mθ

N is a weakly-compact subset of P1(�).

III. DISTRIBUTIONALLY ROBUST RISK-CONSTRAINED

PROGRAMS AND THEIR CONSISTENCY

In this section, we introduce risk-constrained programs and
their distributionally robust counterparts. We consider ambi-
guity sets defined by the Wasserstein metric and the empirical
distribution as discussed above. Our main result establishes
that as the number of samples increases, the optimizers and
the optimal value of the distributionally robust problems con-
verge, in an appropriate sense, to the corresponding quantities
of the original (with respect to the true data-generating dis-
tribution) risk-constrained problem. Throughout we consider
� ⊂ R

m and d to be a complete metric. A canonical CVaR or
risk-constrained program (RCP) is of the form

min
x∈X

cᵀx

s. t. CVaRP

α(F(x, ξ)) ≤ 0, (5)

where X ⊆ R
n is a closed convex set (potentially defined via

deterministic constraints), c ∈ R
n, α ∈ (0, 1), P ∈ P(�) is

the distribution of the uncertain parameter ξ (see Section II-B
for notation), and F : Rn × � → R is called the constraint
function. Using (2), we can equivalently write the RCP as

min
x∈X,t∈R cᵀx

s. t. EP[(F(x, ξ) + t)+] − tα ≤ 0. (6)

By equivalent, we mean that x is a feasible point for (5) if and
only if there exists t such that (x, t) is feasible for (6).

The distributionally robust version of the RCP (5), which we
term as the distributionally robust risk-constrained program
(DRRCP), is given by

min
x∈X

cᵀx

s. t. sup
Q∈Mθ

N

inf
t∈REQ[(F(x, ξ) + t)+ − tα] ≤ 0, (7)

where Mθ
N is the data-driven Wasserstein ambiguity set

defined in (4). In other words, we require the CVaR constraint
to hold for all distributions that are within a distance θ ≥ 0
from the empirical distribution P̂N := 1

N

∑N
i=1 δ̂ξi

induced
by the samples {̂ξi}i∈[N], drawn independently from P. This
problem is of interest when the decision-maker does not know
the distribution P of the uncertain parameters and instead has
access to samples. Thus, the optimal solution of (7) is robust
with respect to a family of distributions that are likely to have
given rise to the observed samples.

We now present a set of general assumptions.
Assumption 1 (General assumptions on DRRCP): The fol-

lowing hold:
(i) the function F : Rn × � → R is continuous,

(ii) for every ξ ∈ �, x �→ F(x, ξ) is convex on X,
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(iii) for every x ∈ X, ξ �→ F(x, ξ) is bounded on �, and
(iv) F is uniformly Lipschitz over the set X, that is, there

exists L > 0 such that∣∣F(x, ξ) − F(x, ξ ′)
∣∣ ≤ L‖ξ − ξ ′‖,

for all ξ, ξ ′ ∈ � and all x ∈ X.
We first reformulate (7) into a form similar to (6). The below

result shows that the inf and the sup operators in the con-
straint defining DRRCP (7) can be interchanged. The proof is
an application of the min-max theorem due to [22] stated as
Theorem 3 in the Appendix. The results hold under continuity,
convexity, and boundedness conditions in Assumption 1 and
the proof is presented in the Appendix.

Lemma 1 (Min-max equality for the constraint function):
Suppose Assumption 1 1-1 hold. Then, for every x ∈ X, we
have

sup
Q∈Mθ

N

inf
t∈R EQ[(F(x, ξ) + t)+ − tα]

= inf
t∈R sup

Q∈Mθ
N

EQ[(F(x, ξ) + t)+ − tα]. (8)

As a consequence of the above result, we can write the
DRRCP (7) equivalently as

min
x∈X,t∈R cᵀx

s. t. sup
Q∈Mθ

N

EQ[(F(x, ξ) + t)+ − tα] ≤ 0. (9)

That is, x is a feasible point for (7) if and only if there exists
t such that (x, t) is feasible for (9). Having reformulated the
DRRCP into (9), we move on to the consistency analysis. We
require the following assumption throughout.

Assumption 2 (Sequence of finite-sample guarantees):
Sequences {βN} ⊂ (0, 1) and {εN} ⊂ (0,∞) are such
that

∑∞
N=1 βN < ∞, limN→∞ εN = 0, and the following

finite-sample guarantee holds for each N ∈ N,

P
N(W1(P, P̂N) ≤ εN) ≥ 1 − βN . (10)

The above assumption imposes that as the number of
samples increases, the distance between the data-generating
distribution and the empirical distribution becomes vanish-
ingly small with higher confidence. Recent works have indeed
established the existence of such sequences [12]. We start our
analysis with some preliminary lemmas.

Lemma 2 (Uniform convergence of distributions
[12, Lemma 3.7]): Under Assumption 2, we have

P
∞
⎛
⎝ lim

N→∞ sup
Q∈MεN

N

W1(Q,P) = 0

⎞
⎠ = 1.

The proof is analogous to the proof of [12, Lemma 3.7]
and is omitted in the interest of space. The above result shows
that if the Wasserstein radius decreases to zero in a carefully
chosen manner, then any sequence of distributions drawn from
the ambiguity sets converges to the true distribution.

Remark 1 (Comparison with [12]): Following the above
lemma, [12] proves asymptotic consistency of the optimal
value and optimizers of distributionally robust expected cost

minimization programs under suitable boundedness and con-
tinuity assumptions on the cost function. While constrained
optimization programs can be written equivalently as expected
cost minimization problems via an indicator function on the
feasibility set, the consistency results from [12] do not directly
apply as the indicator function is not bounded for points that
violate the constraints.

We now show that as the number of samples increases,
the constraint function of the DRRCP’s equivalent form (9)
converges uniformly to that of the RCP (6). We first define

v(x, t) := EP[(F(x, ξ) + t)+ − tα], (11)

v̂N(x, t) := sup
Q∈MεN

N

EQ[(F(x, ξ) + t)+ − tα], (12)

where note that v̂N is a random function as the ambiguity set
depends on the samples. We now establish uniform P

∞-almost
sure convergence of v̂N from above to v. For this, we require
the constraint function to be uniformly Lipschitz continuous
as stated in Assumption 1.

Lemma 3 (Uniform convergence of v̂N from above to v): Let
Assumption 1 1, 1 and 1 hold. Further, suppose Assumption 2
holds. Then, the following hold

P
∞(v(x, t) ≤ v̂N(x, t) for all sufficiently large N) = 1,

P
∞
(

lim
N→∞ sup

x∈X,t∈R
|̂vN(x, t) − v(x, t)| = 0

)
= 1,

where the first equality is satisfied for all (x, t) ∈ X × R.
Proof: Fix any (x, t) ∈ X × R. From (10), we deduce that

the following inequality holds with probability at least 1−βN ,

EP[(F(x, ξ) + t)+ − tα] ≤ sup
Q∈MεN

N

EQ[(F(x, ξ) + t)+ − tα].

That is, PN(v(x, t) ≤ v̂N(x, t)) ≥ 1 − βN , for all N ∈ N. Since∑∞
N=1 βN < ∞, from Borel-Cantelli Lemma [23, Th. 2.3.6],

we obtain the first assertion.
From the uniform Lipschitz condition on F stated in

Assumption 1 1, we deduce that for any fixed (x, t) ∈ X × R

and any ξ, ξ ′ ∈ �,∣∣((F(x, ξ) + t)+ − tα) − (
(F(x, ξ ′) + t)+ − tα

)∣∣
= ∣∣(F(x, ξ) + t)+ − (F(x, ξ ′) + t)+

∣∣
≤ ∣∣F(x, ξ) − F(x, ξ ′)

∣∣ ≤ L‖ξ − ξ ′‖,
where the first inequality holds because the operator (·)+ is
Lipschitz with constant unity. The above reasoning implies
that the map ξ �→ (F(x, ξ) + t)+ − tα is uniformly Lipschitz
over the set X × R. Using this fact in the dual form of the
definition of the Wasserstein metric [12], we conclude that∣∣EP1 [(F(x, ξ) + t)+ − tα] − EP2 [(F(x, ξ) + t)+ − tα]

∣∣
≤ LW1(P1,P2), (13)

for any two distributions P1 and P2. Consider now a sequence
of positive real numbers δN , N ∈ N such that limN→∞ δN = 0.
For each (x, t) ∈ X × R, let Q

(x,t)
N ∈ MεN

N be a δN-optimal
distribution such that

E
Q

(x,t)
N

[(F(x, ξ) + t)+ − tα] ≤
v̂N(x, t) ≤ E

Q
(x,t)
N

[(F(x, ξ) + t)+ − tα] + δN . (14)
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Existence of such a distribution is due to the fact that
expectation is a linear operator. Next, we have

|̂vN(x, t) − v(x, t)| ≤ |E
Q

(x,t)
N

[(F(x, ξ) + t)+ − tα]

− EP[(F(x, ξ) + t)+ − tα]| + δN

≤ LW1(Q
(x,t)
N ,P) + δN

≤ L sup
Q∈MεN

N

W1(QN,P) + δN . (15)

The first inequality above uses (14), the second inequality fol-
lows from the condition (13), and the last inequality due to
the fact that Q(x,t)

N ∈ MεN
N . Since the right-hand side of (15)

is independent of (x, t), we have

sup
(x,t)∈X×R

|̂vN(x, t) − v(x, t)| ≤ L sup
Q∈MεN

N

W1(Q,P) + δN .

The proof then concludes by invoking Lemma 2.
We note here that the convergence from above of v̂N to v

is due to summability of βN in Assumption 2. If one only
needs convergence, then εN tending to zero is sufficient. We
now present our main result. We denote by JRCP the optimal
value of (5) and for a given N, we let JDRRCPN and {xDRRCPN }N∈N
denote the optimal value and an optimizer of (7), resp., where
θ is set to εN satisfying Assumption 2, i.e., εN is chosen
depending on N and βN satisfying (10).

Theorem 1 [Asymptotic consistency of the DRRCP (7)]: Let
Assumptions 1 and 2 hold. Assume that the feasibility set
of (5) has a nonempty interior and that the optimizers of (5)
belong to a compact set Y ⊂ X. Moreover, assume that for
sufficiently large N and any sequence of i.i.d samples {̂ξi}N

i=1,
optimizers of (7) with θ replaced with εN belong to Y . Then,
the following statements hold P

∞ - almost surely:
1) JRCP ≤ JDRRCPN for all sufficiently large N,
2) JDRRCPN → JRCP as N → ∞, and
3) any accumulation point of any sequence of optimizers

{xDRRCPN }N∈N is an optimal solution of the problem (5).
Proof: The first statement here follows from the first asser-

tion of Lemma 3. For the next two statements, the proof
strategy is to show an analogous convergence argument: that
the optima and optimizers of (9) approach (6). All convergence
statements in this proof involving random quantities hold P

∞-
almost surely and we omit restating this fact for the sake of
brevity. Denote the feasibility sets of (6) and (9) as FRCP and
FDRRCP

N , respectively. Then, FRCP = {(x, t) ∈ X×R | v(x, t) ≤
0} and FDRRCP

N = {(x, t) ∈ X × R | v̂N(x, t) ≤ 0}. Recall that
the set FDRRCP

N is random.
Step 1 Defining W: Since F is continuous, Y is compact,

and F(x, ·) is bounded over � for every x ∈ Y , we deduce that
the set

{
t
∣∣∣ EP[(F(x, ξ) + t)+] − tα ≤ 0, x ∈ Y

}
is compact.

Recall that optimizers of (5) belong to Y . Thus, there exists a
compact set T ⊂ R such that optimizers of (6) belong to the
set W := Y ×T . Similarly, for all sufficiently large N and all
sequence of N i.i.d samples, the set of optimizers of (9) (with
θ replaced with εN) belong to the set W . Since the intersection
of Y and the feasibility set of (5) has a nonempty interior, one
can assume, without loss of generality, that W ∩ FRCP has a
nonempty interior.

Step 2 Establishing FDRRCP
N → FRCP: Following Lemma 3,

we know that v̂N converges uniformly P
∞-almost surely to v.

Using this fact, one can establish convergence, defined in an
appropriate sense, of FDRRCP

N to FRCP. Specifically, we will
show

lim
N→∞ sup

(x,t)∈FDRRCP
N ∩W

dist((x, t),FRCP) = 0, (16)

where dist((x, t),FRCP) is the distance of the point (x, t) to the
set FRCP, that is, dist((x, t),FRCP) = inf(x′,t′)∈FRCP ‖(x, t) −
(x′, t′)‖. We proceed with a contradiction argument to
show (16). Recall the assertion that (16) holds P

∞-almost
surely. Now, for the sake of contradiction, assume that there
exists a set of sequence of i.i.d samples

H :=
{
{̂ξN(σ )}N∈N

∣∣∣ σ ∈ �
}

that has finite measure under the distribution P
∞ and each

element of H violates the limit (16). Here, � is some uncount-
able index set. To be more precise, H gives rise to a set of
sequences {{FDRRCP

N (σ )}N∈N | σ ∈ �} such that each ele-
ment in this set violates (16). This in turn implies that for
each σ ∈ �, one can assign a sequence {(xN(σ ), tN(σ )) ∈
FDRRCP

N (σ ) ∩ W}N∈N and a constant γσ > 0 such that

dist
(
(xN(σ ), tN(σ )),FRCP) > γσ , ∀ N ∈ N. (17)

Since W is compact, there exists a subsequence of
{(xN(σ ), tN(σ ))} that converges to some (x̄(σ ), t̄(σ )) ∈ W .
We denote this subsequence by {(xN(σ ), tN(σ ))} for conve-
nience. Then, due to continuity of v, for any ε/2 > 0, there
exists N1(σ ) ∈ N such that∣∣v(xN(σ ), tN(σ )) − v(x̄(σ ), t̄(σ ))

∣∣ ≤ ε/2

for all N ≥ N1(σ ). Moreover, by P
∞-almost sure uniform

convergence of v̂N → v, for any ε/2 > 0, for almost all
σ ∈ �, there exists N2(σ ) ∈ N such that

|̂vN(xN(σ ), tN(σ )) − v(xN(σ ), tN(σ ))| ≤ ε/2,

for all N ≥ N2(σ ). Using the above two inequalities, we con-
clude that for almost all σ ∈ �, for any ε > 0, there exists
N̄(σ ) such that∣∣̂vN(xN(σ ), tN(σ )) − v(x̄(σ ), t̄(σ ))

∣∣ ≤ ε, ∀N ≥ N̄(σ ).

This implies that limN→∞ v̂N(xN(σ ), tN(σ )) = v(x̄(σ ), t̄(σ ))

for almost all σ . Since v̂N(xN(σ ), tN(σ )) ≤ 0 for all N, we
get v(x̄(σ ), t̄(σ )) ≤ 0, that is, (x̄(σ ), t̄(σ )) ∈ FRCP for almost
all σ ∈ �. This is in contradiction with (17). Hence, we have
established (16).

Step 3 Convergence of optimizers and optimal values: Now
let (xN, tN) ∈ FDRRCP∗

N for all N, where FDRRCP∗
N is the set

of optimal solutions of (9). Since the sequence {(xN, tN)} is
contained in a compact set W , by abuse of notation, we deduce
that (xN, tN) → (x̄, t̄) for some (x̄, t̄) ∈ W . Since FRCP is
closed and (16) holds, we get (x̄, t̄) ∈ FRCP. By continuity,

lim
N→∞ cᵀxN = cᵀx̄ ≥ JRCP, (18)

where JRCP is the optimum value of (5).
Now, let (x∗, t∗) ∈ FRCP∗, where FRCP∗ is the set of optimal

solutions of (6). Since FRCP is convex and its interior is
nonempty, there exists a sequence {(xk, tk)}k∈N belonging to
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the interior of FRCP such that (xk, tk) → (x∗, t∗). This implies
that for any ε > 0, there exists k̄ satisfying

cᵀxk̄ − JRCP = cᵀxk̄ − cᵀx∗ ≤ ε. (19)

Since {(xk, tk)} belongs to the interior of FRCP and v̂N con-
verges to v uniformly over X × R, we deduce that (xk̄, tk̄) ∈
FDRRCP

N for all sufficiently large N. For such N, optimality
of xN implies that cᵀxk̄ ≥ cᵀxN . Using this fact in (19), we
get JRCP ≥ cᵀxk̄ − ε ≥ cᵀxN − ε. Taking N → ∞ gives
JRCP ≥ cᵀx̄ − ε. Since ε can be chosen arbitrarily small,
we obtain JRCP ≥ cᵀx̄. Combined with (18), we conclude
cᵀx̄ = cᵀx∗ and hence x̄ ∈ FRCP∗. Finally, the argument holds
for any convergent subsequence of {(xN, tN)}. The convergence
of the optimum values then follows by continuity.

The first part of our result, that JRCP ≤ JDRRCPN for all suffi-
ciently large N, signifies that the solution of the DRRCP is a
conservative approximation of the solution of the RCP in the
asymptotic regime.

Remark 2 (Discussion on assumptions of Theorem 1): Our
assumption on the interior of the feasibility set of (5) being
nonempty is a fairly standard assumption in consistency anal-
ysis, e.g., [24, Th. 5.5, Prop. 5.30]. This ensures that the
sample-based optimization problem (problem stated in (7)) is
feasible for large N. A sufficient condition for this assumption
to hold is the existence of x ∈ X such that F(x, ξ) < 0 for all
ξ ∈ �; this condition can be checked without knowing P or
samples.

Similarly, our assumption on the existence of a compact
set Y ⊂ X containing the optimizers of (5) and (7) is
also a standard one for consistency analysis [24, Th. 5.3,
Proposition 5.3], and is required to establish the convergence
FDRRCP

N → FRCP. It is trivially satisfied if X is compact. If X
is unbounded, this assumption holds if x �→ EP[F(x, ξ)] and
x �→ EQ[F(x, ξ)] are coercive for some distribution Q ∈ Mθ

N
(e.g., the empirical distribution).

Next, we analyze the consistency of distributionally robust
chance-constrained programs.

IV. DISTRIBUTIONALLY ROBUST CHANCE-CONSTRAINED

PROGRAMS AND THEIR CONSISTENCY

Consider the chance-constrained program (CCP),

min
x∈X

cᵀx

s. t. P((F(x, ξ) ≤ 0) ≥ 1 − α, (20)

where we borrow the notation from Section III. In comparison
with the RCP (5), here, we require the uncertain constraint
F(x, ξ) ≤ 0 to hold with a high probability, i.e., at least 1−α.
Note that this constraint is equivalent to VaRP

α(F(x, ξ)) ≤ 0
and in general, the set of points satisfying the constraint is
non-convex.

The distributionally robust version of the CCP (20), which
we term as the distributionally robust chance-constrained
program (DRCCP), is given as

min
x∈X

cᵀx

s. t. inf
Q∈Mθ

N

Q((F(x, ξ) ≤ 0) ≥ 1 − α, (21)

where Mθ
N is the ambiguity set defined in (4). We next present

the consistency analysis for the DRCCP. As explained before,
the chance-constraint can render the feasibility set non-convex.
Therefore, consistency requires the following conditions which
are different from Assumption 1.

Assumption 3 (Regularity of CCP): The map F is uniformly
continuous and either of the following holds:

(i) The distribution P satisfies

P({ξ ∈ � | F(x, ξ) = 0}) = 0, for all x ∈ X.

(ii) The set-valued map H(x) := {ξ ∈ � | F(x, ξ) ≤ 0} is
convex-valued and continuous over X (where continuity
implies inner and outer semicontinuity of the set-valued
map) and for any x ∈ X, P(bdH(x)) = 0, where bdH(x)
denotes the boundary of the set H(x).

We have the following consistency result. The proof is
largely based on results from [25], where the consistency
analysis was done for ambiguity sets that are not random.
A key step in the proof is to establish almost sure conver-
gence of the feasibility set of the DRCCP to the feasibility
set of the CCP which requires the constraint function to be
continuous. Assumption 3, inspired by [25], states comple-
mentary sufficient conditions which ensure this; [25, Example
4.3] illustrates how Assumption 3 (ii) holds in cases where
Assumption 3 (i) fails.1

Theorem 2 [Asymptotic consistency of the DRCCP (21)]:
Let Assumptions 2 and 3 hold. Assume that there exists a
compact set Y ⊂ X such that the optimizers of (20) belong to
Y . Suppose there exists an optimizer x∗ of (20) that belongs
to the closure of the set {x ∈ X | P(F(x, ξ) ≤ 0) > 1 −
α}. Moreover, assume that for sufficiently large N and any
sequence of i.i.d samples {̂ξi}N

i=1, optimizers of (21) with θ

replaced with εN belong to Y . Then, the following hold P
∞ -

almost surely:
1) JCCP ≤ JDRCCPN for all sufficiently large N,
2) JDRCCPN → JCCP as N → ∞, and
3) any accumulation point of any sequence of optimizers

{xDRCCPN }N∈N is an optimizer of the problem (20).
Here, JCCP is the optimal value of (20) and for a given N,
JDRCCPN and xDRCCPN are the optimal value and an optimizer
of (21), respectively, where θ is set to εN .

Proof: By assumption, without loss of generality, one can
assume that X = Y is a compact set. Define

vCCP(x) := P(F(x, ξ) ≤ 0), (22)

v̂DRCCPN (x) := inf
Q∈MεN

N

Q(F(x, ξ) ≤ 0), (23)

where {εN}N∈N ⊂ (0,∞) is any sequence satisfying the
hypotheses. Using Assumption 2 and following a similar rea-
soning as presented in the proof of Lemma 3, we conclude
that for any x ∈ X,

P
∞(̂vDRCCPN (x) ≤ vCCP(x) for all sufficiently large N

) = 1.

Consequently, JCCP ≤ JDRCCPN for all sufficiently large N.
Regarding the convergence statements, note that from

1The assumption is satisfied for several classes of functions. For example, if
the constraint function has an affine separable form F(x, ξ) = Ax +Bξ , B has
full column rank, and P has a continuous distribution, then P(F(x, ξ) = 0) = 0
for any x.
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[25, Th. 4.9], Assumption 3 implies continuity of vCCP. Further,
from Lemma 2, we deduce that MεN

N converges weakly to P

almost surely. That is, almost surely, any sequence {PN ∈ MεN
N }

converges weakly to P. Thus, from [25, Props. 5.2, 5.3,
Th. 3.2], we obtain P

∞(limN→∞ supx∈X |̂vDRCCPN (x) − vCCP(x)|
= 0) = 1. The proof concludes by applying [25, Th. 3.4].

V. CONCLUSION

We have studied the asymptotic consistency of data-driven
distributionally robust risk- (captured by the CVaR) and
chance-constrained optimization under Wasserstein ambiguity
sets. As a consequence, under suitable assumptions on the
problem data, the distributionally robust versions of the prob-
lems can be used as “robust approximators” of the original
problems. In future, we plan to analyze the rate of convergence
of the consistency arguments. Particularly, we wish to obtain
confidence intervals for original optimizers of the problems
using the solutions of the distributionally robust counterparts.

APPENDIX

The following result aids us in proving Lemma 1.
Theorem 3 (Stochastic min-max equality [22]): Let M be

a nonempty and weakly compact set of probability measures
on (�,B(�)). Consider a function g : R

n × � → R. Let
T ⊆ R

n be a closed convex set. Assume that there exists a con-
vex neighborhood V of T such that for all t ∈ V , the function
g(t, ·) is measurable, integrable with respect to all P ∈ M, and
supP∈M EP[g(t, ξ)] < ∞. Further assume that g(·, ξ) is con-
vex on V for all ξ ∈ �. Let t̄ ∈ argmint∈T supP∈M EP[g(t, ξ)].
Assume that for every t in a neighborhood of t̄, the function
g(t, ·) is bounded and upper semicontinuous on � and the
function g(t̄, ·) is bounded and continuous on �. Then,

inf
t∈T

sup
P∈M

EP[g(t, ξ)] = sup
P∈M

inf
t∈T

EP[g(t, ξ)].

Proof of Lemma 1: We suppress the variable x in the proof
for better readability. We verify that the hypotheses of the
min-max theorem (Theorem 3) hold.

Drawing the parallelism in notation between our case and
Theorem 3, note that here R plays the role of both T and V;
Mθ

N that of M; and the function g is g(t, ξ) := (F(ξ)+ t)+ −
tα. Recall that Mθ

N is weakly compact.
Note that g is continuous as F is so. Further since F is

bounded, for every t ∈ R, the function ξ �→ g(t, ξ) is
bounded and sup

Q∈Mθ
N
EQ[g(t, ξ)] < ∞. Finally, for every

ξ ∈ �, t �→ g(t, ξ) is convex. Thus, to conclude the
proof it remains to show that the infimum on the right-
hand side of (8) is attained. To this end, define the function
h(t) := sup

Q∈Mθ
N

EQ[(F(ξ)+t)+−tα]. Now, for any Q ∈ Mθ
N , the

function t �→ EQ[(F(ξ)+ t)+ − tα] is convex and real-valued.
Since h is supremum over a family of such functions, h is con-
vex, lower semicontinuous [26, Proposition 2.1.2]. Further, for
any ξ , (F(ξ) + t)+ − tα → ∞ as |t| → ∞. This fact along
with boundedness of F implies h(t) → ∞ as |t| → ∞. Thus,
inft∈R h(t) exists. �
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