404 research outputs found

    Analyzing and Interpreting Neural Networks for NLP: A Report on the First BlackboxNLP Workshop

    Full text link
    The EMNLP 2018 workshop BlackboxNLP was dedicated to resources and techniques specifically developed for analyzing and understanding the inner-workings and representations acquired by neural models of language. Approaches included: systematic manipulation of input to neural networks and investigating the impact on their performance, testing whether interpretable knowledge can be decoded from intermediate representations acquired by neural networks, proposing modifications to neural network architectures to make their knowledge state or generated output more explainable, and examining the performance of networks on simplified or formal languages. Here we review a number of representative studies in each category

    Compositionality as an Analogical Process: Introducing ANNE

    Get PDF
    Usage-based constructionist approaches consider language a structured inventory of constructions, form-meaning pairings of different schematicity and complexity, and claim that the more a linguistic pattern is encountered, the more it becomes accessible to speakers. However, when an expression is unavailable, what processes underlie the interpretation? While traditional answers rely on the principle of compositionality, for which the meaning is built word-by-word and incrementally, usage-based theories argue that novel utterances are created based on previously experienced ones through analogy, mapping an existing structural pattern onto a novel instance. Starting from this theoretical perspective, we propose here a computational implementation of these assumptions. As the principle of compositionality has been used to generate distributional representations of phrases, we propose a neural network simulating the construction of phrasal embedding as an analogical process. Our framework, inspired by word2vec and computer vision techniques, was evaluated on tasks of generalization from existing vectors

    TRUST-LAPSE: An Explainable and Actionable Mistrust Scoring Framework for Model Monitoring

    Full text link
    Continuous monitoring of trained ML models to determine when their predictions should and should not be trusted is essential for their safe deployment. Such a framework ought to be high-performing, explainable, post-hoc and actionable. We propose TRUST-LAPSE, a "mistrust" scoring framework for continuous model monitoring. We assess the trustworthiness of each input sample's model prediction using a sequence of latent-space embeddings. Specifically, (a) our latent-space mistrust score estimates mistrust using distance metrics (Mahalanobis distance) and similarity metrics (cosine similarity) in the latent-space and (b) our sequential mistrust score determines deviations in correlations over the sequence of past input representations in a non-parametric, sliding-window based algorithm for actionable continuous monitoring. We evaluate TRUST-LAPSE via two downstream tasks: (1) distributionally shifted input detection, and (2) data drift detection. We evaluate across diverse domains - audio and vision using public datasets and further benchmark our approach on challenging, real-world electroencephalograms (EEG) datasets for seizure detection. Our latent-space mistrust scores achieve state-of-the-art results with AUROCs of 84.1 (vision), 73.9 (audio), and 77.1 (clinical EEGs), outperforming baselines by over 10 points. We expose critical failures in popular baselines that remain insensitive to input semantic content, rendering them unfit for real-world model monitoring. We show that our sequential mistrust scores achieve high drift detection rates; over 90% of the streams show < 20% error for all domains. Through extensive qualitative and quantitative evaluations, we show that our mistrust scores are more robust and provide explainability for easy adoption into practice.Comment: Keywords: Mistrust Scores, Latent-Space, Model monitoring, Trustworthy AI, Explainable AI, Semantic-guided A

    Deep Learning based Recommender System: A Survey and New Perspectives

    Full text link
    With the ever-growing volume of online information, recommender systems have been an effective strategy to overcome such information overload. The utility of recommender systems cannot be overstated, given its widespread adoption in many web applications, along with its potential impact to ameliorate many problems related to over-choice. In recent years, deep learning has garnered considerable interest in many research fields such as computer vision and natural language processing, owing not only to stellar performance but also the attractive property of learning feature representations from scratch. The influence of deep learning is also pervasive, recently demonstrating its effectiveness when applied to information retrieval and recommender systems research. Evidently, the field of deep learning in recommender system is flourishing. This article aims to provide a comprehensive review of recent research efforts on deep learning based recommender systems. More concretely, we provide and devise a taxonomy of deep learning based recommendation models, along with providing a comprehensive summary of the state-of-the-art. Finally, we expand on current trends and provide new perspectives pertaining to this new exciting development of the field.Comment: The paper has been accepted by ACM Computing Surveys. https://doi.acm.org/10.1145/328502

    Mindful Explanations: Prevalence and Impact of Mind Attribution in XAI Research

    Full text link
    When users perceive AI systems as mindful, independent agents, they hold them responsible instead of the AI experts who created and designed these systems. So far, it has not been studied whether explanations support this shift in responsibility through the use of mind-attributing verbs like "to think". To better understand the prevalence of mind-attributing explanations we analyse AI explanations in 3,533 explainable AI (XAI) research articles from the Semantic Scholar Open Research Corpus (S2ORC). Using methods from semantic shift detection, we identify three dominant types of mind attribution: (1) metaphorical (e.g. "to learn" or "to predict"), (2) awareness (e.g. "to consider"), and (3) agency (e.g. "to make decisions"). We then analyse the impact of mind-attributing explanations on awareness and responsibility in a vignette-based experiment with 199 participants. We find that participants who were given a mind-attributing explanation were more likely to rate the AI system as aware of the harm it caused. Moreover, the mind-attributing explanation had a responsibility-concealing effect: Considering the AI experts' involvement lead to reduced ratings of AI responsibility for participants who were given a non-mind-attributing or no explanation. In contrast, participants who read the mind-attributing explanation still held the AI system responsible despite considering the AI experts' involvement. Taken together, our work underlines the need to carefully phrase explanations about AI systems in scientific writing to reduce mind attribution and clearly communicate human responsibility.Comment: 21 pages, 6 figures, to be published in PACM HCI (CSCW '24
    corecore