22 research outputs found

    Almost Optimal Distribution-Free Junta Testing

    Get PDF
    We consider the problem of testing whether an unknown n-variable Boolean function is a k-junta in the distribution-free property testing model, where the distance between functions is measured with respect to an arbitrary and unknown probability distribution over {0,1}^n. Chen, Liu, Servedio, Sheng and Xie [Zhengyang Liu et al., 2018] showed that the distribution-free k-junta testing can be performed, with one-sided error, by an adaptive algorithm that makes O~(k^2)/epsilon queries. In this paper, we give a simple two-sided error adaptive algorithm that makes O~(k/epsilon) queries

    Near-Optimal Algorithm for Distribution-Free Junta Testing

    Full text link
    We present an adaptive algorithm with one-sided error for the problem of junta testing for Boolean function under the challenging distribution-free setting, the query complexity of which is O~(k)/ϵ\tilde O(k)/\epsilon. This improves the upper bound of O~(k2)/ϵ\tilde O(k^2)/\epsilon by \cite{liu2019distribution}. From the Ω(klogk)\Omega(k\log k) lower bound for junta testing under the uniform distribution by \cite{sauglam2018near}, our algorithm is nearly optimal. In the standard uniform distribution, the optimal junta testing algorithm is mainly designed by bridging between relevant variables and relevant blocks. At the heart of the analysis is the Efron-Stein orthogonal decomposition. However, it is not clear how to generalize this tool to the general setting. Surprisingly, we find that junta could be tested in a very simple and efficient way even in the distribution-free setting. It is interesting that the analysis does not rely on Fourier tools directly which are commonly used in junta testing. Further, we present a simpler algorithm with the same query complexity

    Learning and Testing Variable Partitions

    Get PDF
    Let FF be a multivariate function from a product set Σn\Sigma^n to an Abelian group GG. A kk-partition of FF with cost δ\delta is a partition of the set of variables V\mathbf{V} into kk non-empty subsets (X1,,Xk)(\mathbf{X}_1, \dots, \mathbf{X}_k) such that F(V)F(\mathbf{V}) is δ\delta-close to F1(X1)++Fk(Xk)F_1(\mathbf{X}_1)+\dots+F_k(\mathbf{X}_k) for some F1,,FkF_1, \dots, F_k with respect to a given error metric. We study algorithms for agnostically learning kk partitions and testing kk-partitionability over various groups and error metrics given query access to FF. In particular we show that 1.1. Given a function that has a kk-partition of cost δ\delta, a partition of cost O(kn2)(δ+ϵ)\mathcal{O}(k n^2)(\delta + \epsilon) can be learned in time O~(n2poly(1/ϵ))\tilde{\mathcal{O}}(n^2 \mathrm{poly} (1/\epsilon)) for any ϵ>0\epsilon > 0. In contrast, for k=2k = 2 and n=3n = 3 learning a partition of cost δ+ϵ\delta + \epsilon is NP-hard. 2.2. When FF is real-valued and the error metric is the 2-norm, a 2-partition of cost δ2+ϵ\sqrt{\delta^2 + \epsilon} can be learned in time O~(n5/ϵ2)\tilde{\mathcal{O}}(n^5/\epsilon^2). 3.3. When FF is Zq\mathbb{Z}_q-valued and the error metric is Hamming weight, kk-partitionability is testable with one-sided error and O(kn3/ϵ)\mathcal{O}(kn^3/\epsilon) non-adaptive queries. We also show that even two-sided testers require Ω(n)\Omega(n) queries when k=2k = 2. This work was motivated by reinforcement learning control tasks in which the set of control variables can be partitioned. The partitioning reduces the task into multiple lower-dimensional ones that are relatively easier to learn. Our second algorithm empirically increases the scores attained over previous heuristic partitioning methods applied in this context.Comment: Innovations in Theoretical Computer Science (ITCS) 202

    Testing and Learning Quantum Juntas Nearly Optimally

    Full text link
    We consider the problem of testing and learning quantum kk-juntas: nn-qubit unitary matrices which act non-trivially on just kk of the nn qubits and as the identity on the rest. As our main algorithmic results, we give (a) a O~(k)\widetilde{O}(\sqrt{k})-query quantum algorithm that can distinguish quantum kk-juntas from unitary matrices that are "far" from every quantum kk-junta; and (b) a O(4k)O(4^k)-query algorithm to learn quantum kk-juntas. We complement our upper bounds for testing quantum kk-juntas and learning quantum kk-juntas with near-matching lower bounds of Ω(k)\Omega(\sqrt{k}) and Ω(4kk)\Omega(\frac{4^k}{k}), respectively. Our techniques are Fourier-analytic and make use of a notion of influence of qubits on unitaries

    Distribution-Free Proofs of Proximity

    Full text link
    Motivated by the fact that input distributions are often unknown in advance, distribution-free property testing considers a setting in which the algorithmic task is to accept functions f:[n]{0,1}f : [n] \to \{0,1\} having a certain property Π\Pi and reject functions that are ϵ\epsilon-far from Π\Pi, where the distance is measured according to an arbitrary and unknown input distribution D[n]D \sim [n]. As usual in property testing, the tester is required to do so while making only a sublinear number of input queries, but as the distribution is unknown, we also allow a sublinear number of samples from the distribution DD. In this work we initiate the study of distribution-free interactive proofs of proximity (df-IPP) in which the distribution-free testing algorithm is assisted by an all powerful but untrusted prover. Our main result is a df-IPP for any problem ΠNC\Pi \in NC, with O~(n)\tilde{O}(\sqrt{n}) communication, sample, query, and verification complexities, for any proximity parameter ϵ>1/n\epsilon>1/\sqrt{n}. For such proximity parameters, this result matches the parameters of the best-known general purpose IPPs in the standard uniform setting, and is optimal under reasonable cryptographic assumptions. For general values of the proximity parameter ϵ\epsilon, our distribution-free IPP has optimal query complexity O(1/ϵ)O(1/\epsilon) but the communication complexity is O~(ϵn+1/ϵ)\tilde{O}(\epsilon \cdot n + 1/\epsilon), which is worse than what is known for uniform IPPs when ϵ<1/n\epsilon<1/\sqrt{n}. With the aim of improving on this gap, we further show that for IPPs over specialised, but large distribution families, such as sufficiently smooth distributions and product distributions, the communication complexity can be reduced to ϵn(1/ϵ)o(1)\epsilon\cdot n\cdot(1/\epsilon)^{o(1)} (keeping the query complexity roughly the same as before) to match the communication complexity of the uniform case
    corecore