188,244 research outputs found

    An effective likelihood-free approximate computing method with statistical inferential guarantees

    Get PDF
    Approximate Bayesian computing is a powerful likelihood-free method that has grown increasingly popular since early applications in population genetics. However, complications arise in the theoretical justification for Bayesian inference conducted from this method with a non-sufficient summary statistic. In this paper, we seek to re-frame approximate Bayesian computing within a frequentist context and justify its performance by standards set on the frequency coverage rate. In doing so, we develop a new computational technique called approximate confidence distribution computing, yielding theoretical support for the use of non-sufficient summary statistics in likelihood-free methods. Furthermore, we demonstrate that approximate confidence distribution computing extends the scope of approximate Bayesian computing to include data-dependent priors without damaging the inferential integrity. This data-dependent prior can be viewed as an initial `distribution estimate' of the target parameter which is updated with the results of the approximate confidence distribution computing method. A general strategy for constructing an appropriate data-dependent prior is also discussed and is shown to often increase the computing speed while maintaining statistical inferential guarantees. We supplement the theory with simulation studies illustrating the benefits of the proposed method, namely the potential for broader applications and the increased computing speed compared to the standard approximate Bayesian computing methods

    Asymptotics of the two-stage spatial sign correlation

    Get PDF
    Acknowledgments This research was supported in part by the Collaborative Research Grant 823 of the German Research Foundation. The authors wish to thank the editors and referees for their careful handling of the manuscript. They further acknowledge the anonymous referees of the article Spatial sign correlation (J. Multivariate Anal. 135, pages 89–105, 2015), who independently of each other suggested to further explore the properties of two-stage spatial sign correlation.Non peer reviewedPreprin

    Spatial Quantile Regression In Analysis Of Healthy Life Years In The European Union Countries

    Get PDF
    The paper investigates the impact of the selected factors on the healthy life years of men and women in the EU countries. The multiple quantile spatial autoregression models are used in order to account for substantial differences in the healthy life years and life quality across the EU members. Quantile regression allows studying dependencies between variables in different quantiles of the response distribution. Moreover, this statistical tool is robust against violations of the classical regression assumption about the distribution of the error term. Parameters of the models were estimated using instrumental variable method (Kim, Muller 2004), whereas the confidence intervals and p-values were bootstrapped

    Heteroscedastic Gaussian processes for uncertainty modeling in large-scale crowdsourced traffic data

    Full text link
    Accurately modeling traffic speeds is a fundamental part of efficient intelligent transportation systems. Nowadays, with the widespread deployment of GPS-enabled devices, it has become possible to crowdsource the collection of speed information to road users (e.g. through mobile applications or dedicated in-vehicle devices). Despite its rather wide spatial coverage, crowdsourced speed data also brings very important challenges, such as the highly variable measurement noise in the data due to a variety of driving behaviors and sample sizes. When not properly accounted for, this noise can severely compromise any application that relies on accurate traffic data. In this article, we propose the use of heteroscedastic Gaussian processes (HGP) to model the time-varying uncertainty in large-scale crowdsourced traffic data. Furthermore, we develop a HGP conditioned on sample size and traffic regime (SRC-HGP), which makes use of sample size information (probe vehicles per minute) as well as previous observed speeds, in order to more accurately model the uncertainty in observed speeds. Using 6 months of crowdsourced traffic data from Copenhagen, we empirically show that the proposed heteroscedastic models produce significantly better predictive distributions when compared to current state-of-the-art methods for both speed imputation and short-term forecasting tasks.Comment: 22 pages, Transportation Research Part C: Emerging Technologies (Elsevier
    corecore