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SUMMARY

Approximate Bayesian computing is a powerful likelihood-free method that has grown in-

creasingly popular since early applications in population genetics. However, complications arise

in the theoretical justification for Bayesian inference conducted from this method with a non-

sufficient summary statistic. In this paper, we seek to re-frame approximate Bayesian comput-

ing within a frequentist context and justify its performance by standards set on the frequency

coverage rate. In doing so, we develop a new computational technique called approximate confi-

dence distribution computing, yielding theoretical support for the use of non-sufficient summary

statistics in likelihood-free methods. Furthermore, we demonstrate that approximate confidence

distribution computing extends the scope of approximate Bayesian computing to include data-

dependent priors without damaging the inferential integrity. This data-dependent prior can be

viewed as an initial ‘distribution estimate’ of the target parameter which is updated with the re-

sults of the approximate confidence distribution computing method. A general strategy for con-

structing an appropriate data-dependent prior is also discussed and is shown to often increase the

computing speed while maintaining statistical inferential guarantees. We supplement the theory

with simulation studies illustrating the benefits of the proposed method, namely the potential for

broader applications and the increased computing speed compared to the standard approximate

Bayesian computing methods.

Some key words: Approximate Bayesian computing; Bernstein-von Mises; Confidence distribution; Exact inference;
Large sample theory.

1. INTRODUCTION

1·1. Background to approximate Bayesian computing

Approximate Bayesian computing is a likelihood-free method that approximates a posterior

distribution while avoiding direct calculation of the likelihood. This procedure originated in pop-

ulation genetics where complex demographic histories yield intractable likelihoods. Since then,

http://arxiv.org/abs/1705.10347v4
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approximate Bayesian computing has been applied to many other areas besides the biological sci-

ences including astronomy and finance; cf., e.g., Cameron & Pettitt (2012); Csilléry et al. (2010);

Peters (2012). Despite its practical popularity in providing a Bayesian solution for complex data

problems, the theoretical justification for inference from this method is under-developed and has

only recently been explored in statistical literature; cf., e.g., Robinson et al. (2014); Barber et al.

(2015); Frazier et al. (2018); Li & Fearnhead (2018b). In this paper, we seek to re-frame the

problem within a frequentist setting and help address two weaknesses of approximate Bayesian

computing: (1) lack of theoretical justification for Bayesian inference when using a non-sufficient

summary statistic and (2) slow computing speed. We propose a novel likelihood-free method as

a bridge connecting Bayesian and frequentist inferences and examine it within the context of the

existing literature on approximate computing.

Let xobs = {x1, . . . , xn} be an observed sample from some unknown distribution with density

f(· | θ). Assume that the sample is observations of some data generating model, Mθ , where

θ ∈ P ⊂ R
p is unknown. For any given θ, we know how to simulate artificial data from Mθ. The

standard accept-reject version of approximate Bayesian computing proceeds as follows:

Algorithm 1. (Accept-reject approximate Bayesian computing)

1. Simulate θ1, . . . , θN ∼ π(θ);

2. For each i = 1, . . . , N , simulate x(i) = {x(i)1 , . . . , x
(i)
n } from Mθi ;

3. For each i = 1, . . . , N , accept θi with probability Kε(s
(i) − sobs), where sobs =

Sn(xobs) and s(i) = Sn(x
(i)).

In the above algorithm, π(·) is a prior distribution function and the data is summarized by some

low-dimension summary statistic, Sn(·) (e.g., Sn(·) is a mapping from the sample space in R
n

to S ⊂ R
d with d ≤ n). The kernel probability Kε(·) follows the notation Kε(u) = ε−1K(u/ε),

where Kε(·) is a kernel function. We refer to ε as the tolerance level and typically assume it goes

to zero. In many cases, ε is required to go to zero at a certain rate of n (cf., e.g., Li & Fearnhead

(2018b)), but there are cases in finite sample development in which ε is independent of sample

size n, see e.g. Barber et al. (2015).

The underlying distribution from which the accepted copies or draws of θ are generated in

an Appropriate Bayesian computing algorithm is called the approximate Bayesian computed

posterior, with the probability density,

πε(θ | sobs) =
∫
S π(θ)fn(s | θ)Kε(s− sobs) ds∫

P×S π(θ)fn(s | θ)Kε(s− sobs) dsdθ
, (1)

and corresponding cumulative distribution function denoted by Πε(θ | sobs). Here fn(s | θ) de-

notes the probability density of the summary statistic, implied by f(x | θ) and is typically un-

known. We will refer to fn(s | θ) as an s-likelihood. Since this is a Bayesian procedure, Algo-

rithm 1 assumes a prior distribution, π(·), on θ. In the absence of prior information, the user may

select a flat prior.

A common assertion is that πε(θ | sobs) is close enough to the target posterior distribution,

p(θ | x) ∝ π(θ)f(x | θ), e.g. Marin et al. (2011); however, the quality of this approximation de-

pends on the closeness of the tolerance level to zero and, more crucially for our purposes, on the

choice of summary statistic Sn(·). Indeed, we have the following lemma:

LEMMA 1. Let K(·) be a symmetric kernel density function with
∫
uK(u)du = 0 and∫

‖u‖2K(u)du <∞ where ‖ · ‖ is the Euclidean norm. Suppose the matrix of second deriva-
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tives of fn(s | θ) is bounded with respective to s. Then

πε(θ | sobs) ∝ π(θ)fn(sobs | θ) +O(ε2). (2)

Various versions of this result are known (cf., e.g., Barber et al. (2015) and Li & Fearnhead

(2018a)); for completeness, we provide a brief proof of Lemma 1 in the appendix. Note that,

if the summary statistic Sn(·) is not sufficient, fn(sobs | θ) can be very different from f(x | θ),
in which case πε(θ | sobs) can be a very poor approximation to the target posterior, p(θ | x), even

if ε→ 0.

Figure 1 provides such an example where we consider random data from a Cauchy distribu-

tion with a known scale parameter. Only the data itself is sufficient for the location parameter,

θ; therefore, any summary statistic, including the commonly used sample mean and median,

will not be sufficient. Figure 1 illustrates that, without sufficiency, the posterior approximation

resulting from Algorithm 1, using either sample mean and sample median as Sn(·), will never

converge to the targeted posterior distribution, thus indicating that the approximations to the tar-

get posterior can be quite poor. What’s more, the two different summary statistics lead to quite

different approximate Bayesian computed posteriors πε(θ | sobs). In neither case is the approx-

imate Bayesian computed posterior the same as the targeted posterior distribution, regardless of

sample size or the rate of ε→ 0, including the rate typically required in the existing literature;

cf., Li & Fearnhead (2018b). The approximate Bayesian computed posteriors obtained using the

sample mean are much flatter than those obtained using the sample median. Further details about

Figure 1 can be found in Section 4·1.

For this reason, inference from Πε(· | sobs) can produce misleading results within a Bayesian

context when the summary statistic used is not sufficient. Questions arise such as, if Πε(· | sobs)
is different from the target posterior distribution, can it still be used in Bayesian inference? Or,

since different summary statistics can produce different approximate posterior distributions, can

one or more of these distributions be used to make statistical inferences?
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(a) Cauchy data of sample size n = 50.
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(b) Cauchy data of sample size n = 5000.

Fig. 1: The three curves in each of the two plots are the target posterior (gray) and approximate

Bayesian computed posteriors for data from a Cauchy distribution with known scale parame-

ter for summary statistic Sn = x̄ (solid black) and Sn = Median(x) (dashed black). The prior

density is a constant in R.
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In this paper, we attempt to address these questions by instead re-framing Algorithm 1 within

a frequentist context, thus creating a more general likelihood-free method based on confidence

distribution theory. To this end, we introduce a new computational method called approximate

confidence-distribution computing.

1·2. Approximate confidence distribution computing

When estimating an unknown parameter, we often desire that our estimators, whether point es-

timators or interval estimators, have certain properties such as unbiasedness or a certain coverage

of the true parameter value in the long run. A confidence distribution is an extension of this tra-

dition in that it is a distribution estimate (i.e., it uses a sample-dependent distribution function to

estimate the target parameter) that satisfies certain desirable properties. Following Xie & Singh

(2013), Schweder & Hjort (2016), we define a confidence distribution as follows.

Definition 1. A sample-dependent function on the parameter space is a CONFIDENCE DISTRI-

BUTION for a parameter θ if 1) For each given sample the function is a distribution function on

the parameter space; 2) The function can provide confidence intervals/regions of all levels for θ.

A confidence distribution estimator has a similar appeal to a Bayesian posterior in that it is a

distribution function carrying much information about the parameter. A confidence distribution

however, is a frequentist notion which treats the parameter as a fixed, unknown quantity. It is

not a distribution of the parameter; rather, it is a sample-dependent function used to estimate the

parameter of interest, including to quantify the uncertainty of the estimation.

The theoretical foundation for approximate confidence distribution computing relies upon the

frequentist coverage property of confidence distributions. This is the property by which a con-

fidence distribution is able to produce confidence intervals/regions for θ that contain this true

parameter value, θ0, at any specified frequency.

We hope to demonstrate that the construction of approximate confidence distribution comput-

ing as a likelihood-free method provides one of many examples in which confidence distribution

theory provides a useful inferential tool for a problem where a statistical method with desirable

properties was previously unavailable. Furthermore, approximate confidence distribution com-

puting provides a computational method with potential applications extending beyond the scope

of Algorithm 1 and, as will be discussed later, it introduces some flexibility that can greatly

decrease computing costs.

Approximate confidence distribution computing proceeds in the same manner as Algorithm 1,

but no longer requires a prior assumption on θ; instead, the user is free to select a data-dependent

function, rn(θ), from which potential parameter values will be generated. Specifically, the new

algorithm proceeds as follows:

Algorithm 2. (Accept-reject approximate confidence distribution computing)

1. Simulate θ1, . . . , θN ∼ rn(θ);
2. and 3. are identical with steps 2 and 3 of Algorithm 1.

The underlying distribution from which the accepted draws of θ are simulated is denoted by

Qε(θ | sobs). We refer to Qε(θ | sobs) as an approximate confidence distribution and denote the

corresponding density by qε(θ | sobs) as defined by replacing π(θ) in (1) with rn(θ):

qε(θ | sobs) =
∫
S rn(θ)fn(s | θ)Kε(s− sobs) ds∫

P×S rn(θ)fn(s | θ)Kε(s− sobs) dsdθ
, (3)

In this way, approximate Bayesian computing can be viewed as a special case of approximate

confidence distribution computing with rn(θ) = π(θ).
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From a Bayesian perspective, one may view Algorithm 2 as as an extension permitting the

use of Algorithm 1 in the presence of a data-dependent prior. However, there is another natural,

frequentist interpretation that views the function rn(θ) as an initial distribution estimate for θ and

views Algorithm 2 as a method to update this estimate in pursuit of a better-performing distribu-

tion estimate. The logic of this frequentist interpretation is analogous to any updating algorithm

in point estimation (e.g., say, a Newton-Raphson algorithm or an Expectation-maximization al-

gorithm), which requires an initial estimate and then updates in search for a better-performing

estimate. One may ask if the data are thus being ‘doubly used’. The answer depends on how the

initial distribution estimate is chosen. Under some constraints on rn(θ), Algorithm 2 can guaran-

tee a distribution estimator for θ that satisfies the frequentist coverage property thus qε(θ | sobs)
can be used to make inferences (e.g., deriving confidence intervals/regions, p-values, etc.), al-

though Algorithm 2 may not guarantee ‘estimation efficiency’ (i.e., producing the tightest confi-

dence sets for all levels) unless the summary statistic is sufficient.

1·3. Related work

Likelihood-free methods such as approximate Bayesian computing have existed for more than

20 years, but research regarding the theoretical properties of these methods is a newly active area,

e.g. Li & Fearnhead (2018b); Frazier et al. (2018). Here we do not attempt to give a full review

of all likelihood-free methods, but we acknowledge the existence of alternatives such as indirect

inference, e.g. Creel & Kristensen (2013); Gourieroux et al. (1993).

One of our theoretical results specifies conditions under which Algorithm 2 produces an

asymptotically normal confidence distribution. This result, presented in Section 3, generalizes

the work of Li & Fearnhead (2018a) on the asymptotic normality of the approximate Bayesian

computed posterior. However, in contrast to these papers, we are not concerned with viewing the

result of Algorithm 2 as an approximation to some posterior distribution, rather we focus on the

properties and performance of this distribution inherited through its connection to confidence dis-

tributions. More importantly, the properties we develop here allow us to conduct inference while

guaranteeing the frequentist coverage property. Additionally, presented separately in Section 2,

we specify general conditions under which Algorithm 2 can be used to conduct frequentist in-

ference that is beyond the Bernstein-von Mises type convergence, including exact inference that

does not rely on any sort of asymptotic (large n) assumptions or normally distributed popula-

tions. Aside from the errors of Monte-Carlo approximation and the choice of tolerance level, the

exact inference from Algorithm 2 ensures the targeted repetitive coverage rates and type-I errors.

The main goal of the paper is to present the idea that the continued study of likelihood-free

methods would benefit from the incorporation of confidence distribution theory. To this end, and

for the ease of presentation, we mainly focus on the basic accept-reject version of Algorithm 2,

although we will compare the performance of Algorithm 2 with a typical importance sampling

approximate Bayesian computing method and also conclude that much of the existing work in

the approximate Bayesian computation literature can also be applied to Algorithm 2 to further

improve upon its computational performance as discussed in Sections 2 and 5.

1·4. Notation

Throughout the paper we will use the following notation. The observed data is xobs ∈ X ⊂
R
n, the summary statistic is a mapping Sn : X → S ⊂ R

d and the observed summary statistic

is sobs = Sn(xobs). The parameter of interest is θ ∈ P ⊂ R
p with p ≤ d ≤ n; i.e. the number

of unknown parameters is no greater than the number of summary statistics and dimension of

the summary statistic is no greater than the dimension of the data. If some function of Sn is

an estimator for θ, we denote this function by θ̂S . Any function of a particular observation,
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sobs, is therefore an estimate. Let θ0 represent the fixed, true value of the parameter θ. Denote

the approximate confidence distribution function by Qε(θ | sobs), its density function by qε(θ |
sobs), and a random draw from this distribution by θACC. Similarly, denote the approximate

Bayesian computed posterior distribution by Πε(θ | sobs) and its density function by πε(θ | sobs).
Additionally, for a real function g(x), denote its gradient function at some x = x0 byDx{g(x0)};

for simplicity and when it is clear from context, x is omitted from Dx.

2. ESTABLISHING FREQUENTIST GUARANTEES FOR ALGORITHM 2

In this section, we formally establish conditions under which Algorithm 2 can be used to

produce confidence regions with guaranteed frequentist coverages at any level.

To motivate our main theoretical result, we first consider the simple case where we have a

scalar parameter, θ, and θ̂S is a function that maps the summary statistic into the parameter space

P. Suppose further that the Monte-Carlo copy of (θACC − θ̂S) | Sn = sobs and the sampling

population copy of (θ̂S − θ) | θ = θ0 have the same distribution:

(θACC − θ̂S) | Sn = sobs ∼ (θ̂S − θ) | θ = θ0. (4)

Then, we can conduct inference for θ with a guaranteed frequentist standard of performance. On

the left hand side of (4), θ̂S is fixed given sobs and the (conditional) probability measure is with

respect to θACC, meaning the randomness is due to the simulation conducted in Algorithm 2.

Conversely, on the right hand side, θ̂S is a random variable since the data is random for a given

parameter θ0. That is, equation (4) states that the ‘randomness’ in θACC from the Monte-Carlo

simulation match that in θ̂S of the sampling population. This is very similar to the bootstrap cen-

tral limit theorem that n1/2(θB − θ̂S) | Sn = sobs ∼ n1/2(θ̂S − θ) | θ = θ0, as n→ ∞, where

appropriate; cf, Singh (1981) and Freedman & Bickel (1981). There, the randomness on the left

hand side is from the bootstrap estimator, θB given Sn = sobs, and the randomness on the right

hand side is from the random sample of the sampling population.

Given (4), let G(t) = pr(θ̂S − θ ≤ t | θ = θ0). Then pr∗(θACC − θ̂S ≤ t | Sn = sobs) = G(t)
where pr∗(· | Sn = sobs) refers to the probability measure on simulation given Sn = sobs cor-

responding to the left hand side of (4). Define H(t, sobs) = pr∗(2θ̂S − θACC ≤ t | Sn = sobs),
a mapping from P × S → (0, 1). Conditional on sobs, H(t, sobs) is a sample-dependent cu-

mulative distribution function on P; We use the shorthand Hn(t) to denote H(t, sobs). The

following statement Remark1 holds as proved in the appendix. In the remark, H−1
n (α) is the

quantile of Hn(·), i.e., the solution of Hn(t) = α, and θACC,α is a quantile of θACC, defined by

pr∗(θACC ≤ θACC,α | Sn = sobs) = α.

REMARK 1. Under the setup above, Hn(t) is a confidence distribution for θ and, for any

α ∈ (0, 1), (−∞,H−1
n (1− α)] = (−∞, 2θ̂S − θACC,α] is an (1− α)-level confidence interval

of θ.

Now we introduce a key lemma that generalizes the argument above to a multidimensional

parameter and a wider range of relationships between Sn and θACC. This lemma assumes a re-

lationship between two mappings V and W : P × S → R
k, where V (·, Sn) is a function that

acts on the parameter space P, given Sn = sobs, and W (θ, ·) is a function that acts on the space

of the summary statistic S ⊂ R
d, given θ = θ0. For example, in the one dimensional argument

above, V (t1, t2) = −W (t1, t2) = t1 − θ̂(t2), where θ̂ is a function of the summary statistic. Cor-

responding to (4), we require a matching equation: V (θACC, Sn) | Sn = sobs ∼W (θ, Sn) | θ =
θ0. Formally, for general mappings V and W , we consider Condition 1 below. In the condition,
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δε → 0, as ε→ 0. Here, ε is the tolerance level for the matching of simulated s(i) and sobs in

step 3 of Algorithm 2, and it may or may not depend on the sample size n.

CONDITION 1. For B a Borel set on R
k,

sup
A∈B

‖pr∗{V (θACC, Sn) ∈ A | Sn = sobs} − pr{W (θ, Sn) ∈ A | θ = θ0}‖ = op(δε),

where pr∗(· | sobs) refers to the probability measure on the simulation given Sn = sobs and pr(· |
θ0) is the probability measure on the data before it is observed.

For a given sobs and α ∈ (0, 1), define a set A1−α ⊂ R
k such that,

pr∗{V (θACC, Sn) ∈ A1−α | Sn = sobs} = (1− α) + o(δ′), (5)

where δ′ > 0 is a pre-selected small positive precision number. Condition 1 implies that

Γ1−α(sobs)
def

= {θ : W (θ, sobs) ∈ A1−α} ⊂ P (6)

is a level (1− α)100% confidence region for θ0. We summarize this in the following lemma

which is proved in the appendix. Note that in the next lemma, δ = max{δε, δ′} and there are

no requirements on the sufficiency of the summary statistic Sn in the lemma. However, if the

selected summary statistic happens to be sufficient, then inference based on the results of Algo-

rithm 2 is equivalent to maximum likelihood inference.

LEMMA 2. Suppose that there exist mappings V andW : P × S → R
k such that Condition 1

holds. Then, pr{θ ∈ Γ1−α(Sn) | θ = θ0} = (1− α) + op(δ). If further Condition 1 holds almost

surely, then pr{θ ∈ Γ1−α(Sn) | θ = θ0} = (1− α) + o(δ), almost surely.

Often, δ′ in (5) is designed to control Monte-Carlo approximation error, thus whether or not

Lemma 2 is a large sample result depends only on whether or not we require ε→ 0 at a certain

rate of the sample size n. In the latter part of this section, we will consider a case of Lemma 2

that is sample-size independent. In this case, aside from the errors of Monte-Carlo approximation

and the choice of tolerance level, Algorithm 2 provides an exact inference that does not rely on

large sample asymptotics. Later, in Section 3, we extend the large-sample Bernstein-von Mises

theory to Algorithm 2, using a tolerance ε that depends on n.

Before we move on to verify Condition 1 for different cases, we first relate equation (5) to

θACC samples from Qε(· | sobs). Suppose θACC,i, i = 1, . . . , N , are m Monte-Carlo copies of

θACC. Let vi = V (θACC,i, sobs). The set A1−α can typically be a (1− α)100% contour set

of {v1, . . . , vm} satisfying o(δ′) = o(m−1/2). For example, we can directly use v1, . . . , vm to

construct a 100(1 − α)% depth contour as A1−α = {θ : (1/m)
∑m

i=1 I{D̂(vi) < D̂(θ)} ≥ α},

where D̂(·) is an empirical depth function on P computed based on the empirical distri-

bution of {v1, . . . , vm}. See, e.g., Serfling (2002) and Liu et al. (1999) for the development

of data depth and depth contours in nonparametric multivariate analysis. In the special case

where k = 1, by defining q̂α = v[mα], the [mα]th largest v1, . . . , vm, a (1− α)100% confidence

region for θ0 can then be constructed as Γ1−α(sobs) = {θ : q̂α/2 ≤W (θ, sobs) ≤ q̂1−α/2} or

Γ1−α(sobs) = {θ :W (θ, sobs) ≤ q̂1−α}.

We also remark that the existing literature on likelihood-free methods typically relies

upon obtaining a “nearly sufficient” summary statistic to justify inferential results; see e.g.,

Joyce & Marjoram (2008). In this paper however, we explore guaranteed frequentist properties

of Algorithm 2 that hold without regard to a “sufficient enough” summary statistic. However,

if the summary statistic happens to be sufficient, then an appropriate choice of the rough ini-
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tial estimate, rn(θ), means that inference based on the resulting distribution, Qε(· | sobs), is also

efficient.

To end this section, we explore a special case of Algorithm 2 where the mappings V and

W correspond an approximate pivotal statistic. Here, we call a mapping T = T (θ, Sn) from

P × S → R
d an approximate pivot statistic, if

pr{T (θ, Sn) ∈ A | θ = θ0} =

∫

t∈A
g(t)dt {1 + o(δ

′′

)}, (7)

where g(t) is a density function that is free of the parameter θ and A ⊂ R
d is any Borel set.

Also, δ
′′

is either zero or a small number (tending to zero) that may or may not depend on the

sample size n. The usual pivotal cases are special examples of such. Other examples, including

that to be discussed in Section 3, involve large sample asymptotics with δ
′′

is a function of n,

in particular, δ
′′ → 0 as n→ 0. However, there are also cases where δ

′′

does not involve the

sample size n. For example, suppose Sn|θ = λ ∼ Poisson(λ). Then, T (λ, Sn) = (Sn − λ)/
√
λ

is an approximate pivot when λ is large. In this case, the density function is φ(t){1 + o(λ−1)},

where φ(t) the density function of the standard normal distribution (Cheng, 1949).

We have the following theorem for approximate pivot statistics. A proof is given in the ap-

pendix.

THEOREM 1. Suppose T = T (θ, Sn) is an approximate pivot statistic that is differentiable

with respect to the summary statistic. Assume that, for given t and θ, st,θ is solution to the

equation t = T (θ, s) and
∫
rn(θ)Kε (st,θ − sobs) dθ = C{1 + o(δ

′

ε)}, where C is a constant free of t, (8)

Here, rn(θ),K(·), and ε are as specified in Algorithm 2, and δ
′

ε → 0 as ε→ 0. Then, Condition 1

holds almost surely, for V (θ, Sn) =W (θ, Sn) = T (θ, Sn) and δ = max{δ′′ , δ′ε}. Furthermore,

by Lemma 2 and for observed Sn = sobs, Γ1−α(sobs) defined in (6) is a level (1− α)100%
confidence region with pr{θ ∈ Γ1−α(Sn) | θ = θ0} = (1− α) + o(δ), almost surely.

Location and scale families contain natural pivot statistics. We verify requirement (8) for the

location and scale families, which leads to the following corollary. A proof of the corollary is

also given in the appendix.

COROLLARY 1. Assume µ̂S and σ̂S are point estimators for location and scale parameters µ
and σ, respectively.

Part 1 Suppose µ̂S ∼ g1(µ̂S − µ). If rn(µ) ∝ 1, then, for any u,

|pr∗(µACC − µ̂S ≤ u | µ̂obs)− pr(µ̂S − µ ≤ u | µ = µ0)| = o(1), almost surely.

Part 2 Suppose σ̂S ∼ g2(σ̂S/σ)/σ. If rn(σ) ∝ 1/σ, then, for any v > 0,
∣∣∣∣pr∗

(
σACC

σ̂S
≤ v | σ̂obs

)
− pr

(
σ̂S
σ

≤ v | σ = σ0

)∣∣∣∣ = o(1), almost surely.

Part 3 Suppose µ̂S ∼ g1{(µ̂S − µ)/σ}/σ and σ̂S ∼ g2 (σ̂S/σ) /σ are independent. If rn(µ, σ) ∝
1/σ, then, for any u and any v > 0,

∣∣∣∣pr∗
(
µACC − µ̂S ≤ u,

σACC

σ̂S
≤ v | µ̂obs, σ̂obs

)
−

pr

(
µACC − µ̂S ≤ u,

σ̂S
σ

≤ v | µ = µ0, σ = σ0

)∣∣∣∣ = o(1), almost surely.
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Furthermore, we may derive H1(µ̂S , x) = 1−
∫ µ̂S−x
−∞ g1(w) dw, a confidence distribution for µ

induced by (µ̂S − µ) given µ = µ0, or H2(σ̂
2
S , x) = 1−

∫ σ̂2

S
/x

0 g2(w)dw, a confidence distribu-

tion for σ2 induced by σ̂2S/σ
2 given σ = σ0.

Note that Theorem 1 and Corollary 1 cover some finite sample examples that do not require

n→ ∞, one of which is illustrated in Figure 1. Specifically, Corollary 1 Part 1 suggests that

the ABC posteriors obtained in the Cauchy example in Figure 1, using either the sample mean

or sample median as the summary statistic, are both confidence distributions. Thus, they both

are ‘distribution estimators’ that can be utilized to make inference. Both are not efficient, and

the one by the sample median is more efficient than the one by the sample mean (in terms of

having shorted confidence intervals or a higher power level-α test). This development represents

a departure from the typical asymptotic arguments and permits the use of Algorithm 2 in forming

confidence intervals/regions with guaranteed frequentist coverages even when n is finite.

The next section considers the case in which the tolerance level ε does depend on the sample

size n. We will now denote ε by εn and study the large sample performance of the proposed

approximate confidence distribution computing method.

3. FREQUENTIST COVERAGE OF ALGORITHM 2 FOR LARGE SAMPLES

3·1. Bernstein-von Mises theorem for Algorithm 2

For Algorithm 1, Condition 1 holds as n→ ∞ by the Bernstein-von Mises type convergence

of πε(θ | sobs) (Li & Fearnhead, 2018b) and selecting εn decreasing to zero. Roughly speaking,

the distribution of a properly scaled draw from Πε(θ | sobs) and the distribution of the corre-

sponding expectation (before the data is observed) are asymptotically the same. Therefore, the

development in Section 2, a confidence region with asymptotically correct coverage can be con-

structed using a sample from Algorithm 1.

Here we show that Condition 1 also holds for the more general Algorithm 2 where rn(θ)
may depend upon the data. The results are based on the same set of conditions as those in

Li & Fearnhead (2018b). The key condition is a central limit theorem of the summary statis-

tic: for all θ in a neighborhood of θ0,

an{Sn − η(θ)} → N{0, A(θ)},
in distribution as n→ ∞, together with requirement on the identifiability of θ0 through η(θ) and

regulatory requirements of A(θ). This condition is denoted by Condition 6 in the supplemen-

tary materials. For convenience, the set of conditions in Li & Fearnhead (2018b) is given in the

supplementary materials. Additionally, some regulatory conditions for rn(θ) are listed below.

CONDITION 2. There exists some δ0 > 0 such that P0 = {θ : ‖θ − θ0‖ < δ0} ⊂ P, rn(θ) ∈
C2(P0), and rn(θ0) > 0.

CONDITION 3. There exists a sequence {τn} and δ > 0, such that τn = o(an) and

supθ∈P0
τ−p
n rn(θ) = Op(1).

CONDITION 4. There exists constants m, M such that 0 < m <| τ−p
n rn(θ0) |< M <∞.

CONDITION 5. It holds that supθ∈Rp τ−1
n D{τ−p

n rn(θ)} = Op(1).

Condition 3 and 4 above essentially requires rn(θ) to be more dispersed than the s-likelihood

for within a compact set by requiring that rn(θ) converges to a point mass more slowly than

fn(θ | sobs). Condition 5 requires the gradient of the standardized rn(θ) to converge with rate
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τn. These are relatively weak conditions and can be satisfied by, e.g., rn(θ) satisfying local

asymptotic normality. We have the following theorem with the proof provided in the appendix.

Note that, in the theorem, θε(sobs) is an estimate for θ, whereas θε(Sn) is an estimator; when

clear, we shorten the notation of both to θε.

THEOREM 2. Assume rn(θ) satisfies Condition 2–5 and 6–10 in the supplementary mate-

rial. If εn = o(a−1
n ) as n→ ∞, then Condition 1 is satisfied with V (θACC, sobs) = an{θACC −

θε(sobs)} and W (θ0, Sn) = an{θε(Sn)− θ0}, where θε(s) =
∫
θ dQε(θ | s).

Theorem 2 says when εn = o(a−1
n ), the coverage of Γ1−α(sobs) is asymptotically correct as

mACC → ∞ and n→ ∞, where mACC is the number of accepted particles in Algorithm 2. In

practice, θε(sobs), needed for constructing Γ1−α, does not have a closed form in most cases, and

is estimated by the sample of θACC.

In Theorem 2, Condition 1 is implied by the following convergence results,

sup
A∈Bp

∣∣∣∣∣

∫

{θ: an(θ−θε)∈A}
dQε(θ | Sn = sobs)−

∫

A
N{t; 0, I(θ0)−1} dt

∣∣∣∣∣ → 0, (9)

in probability, and

an(θε − θ0) → N{0, I(θ0)−1}, (10)

in distribution, as n→ ∞, where I(θ) = Dη(θ)TA−1(θ)Dη(θ). These results generalize the

limit distributions of Πε in Li & Fearnhead (2018a) for the case of εn = o(a−1
n ), since the prior

distribution π(θ) satisfies Condition 2–5. We show that, in the sense of large-sample behavior, in-

ference based on Qε is validated whether or not information from the data is used in constructing

rn(θ).

3·2. Comparison between Algorithm 1 and Algorithm 2

Since Πε and Qε share the same limit distributions according to (9) and (10), when the same

tolerance level is used, confidence regions Γ1−α(sobs) constructed using the sample from Πε

and Qε have the same asymptotic efficiency. Therefore it is computationally more efficient to

use Algorithm 2 with rn(θ) depending on data, since any rn(θ) with τn → ∞ is closer to the

output distribution than π(θ) thus providing a higher acceptance probability for the same ε.
When rn(θ) is available, an alternative to Algorithm 1 is its importance sampling variant which

proposes from rn(θ) (Fearnhead & Prangle, 2012), as specified in the following.

Algorithm 3. (Importance sampling approximate Bayesian computing)

1. Simulate θ1, . . . , θN ∼ rn(θ).

2. For each i = 1, . . . , N , simulate x(i) = {x(i)1 , . . . , x
(i)
n } from Mθ.

3. For each i = 1, . . . , N , accept θi with probability Kε(s
(i) − sobs), where sobs =

Sn(xobs) and s(i) = Sn(x
(i)), and assign importance weights w(θi) = π(θi)/rn(θi).

Though Algorithm 3 is an improvement over Algorithm 1, Algorithm 2 still has a computational

advantage over Algorithm 3, because w(θ) is unbounded as n→ ∞ while the sample weights in

Algorithm 2 are unity. Li & Fearnhead (2018b) mention that certain techniques can be applied to

control the skewed importance weight in Algorithm 3, but Algorithm 2 does not have the same

issue and therefore does not require such controls.

Li & Fearnhead (2018b) point out in Algorithms 1 and 3, that although using εn = o(a−1
n )

gives valid inference, this leads to the degeneracy of Monte Carlo efficiency as n→ ∞, since the

acceptance probability of any proposal distribution degenerates to zero for such a small tolerance
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level. This means that if the dataset is informative, most of the simulated datasets in Algorithms 1

and 3, will be wasted. If εn is outside this regime, Li & Fearnhead (2018b) show that Πε over-

inflates the target posterior uncertainty and is not calibrated, i.e its uncertainty can not correctly

quantify the uncertainty of the target posterior mean. A similar phenomena occurs in Algorithm 2

when too large εn is used. Instead of giving a formal statement, we illustrate this in the following

basic Gaussian example.

Example 1. Consider a univariate normal model with mean θ and unit variance, and observa-

tions that are independent identically distributed from the model with θ = θ0. Assume a standard

normal density for the prior density of θ, and use the normal density with mean µn and vari-

ance b−2
n for rn(θ), where µn and bn are some sequences satisfying bn(µn − θ0) = O(1) and

bn = o(
√
n) as n→ ∞. The choice of µn and bn makes rn(θ) a reasonable proposal density,

since it covers the true parameter θ0 and is more dispersed than the s-likelihood where the sam-

ple mean is the summary statistic in both Algorithm 1 and 2. The Gaussian kernel with variance

ε2n is used for the acceptance/rejection.

For this model, limit distributions of V (θACC, sobs) and W (θ0, Sn) in Theorem 2 for different

regimes of ε can be obtained analytically, since qε(θ | sobs) has the closed form N(θ; θε, σ
2
ε)

where

θε =
sobs + b2n(1/n + ε2)µn

1 + b2n(1/n + ε2)
, σ2ε =

1/n + ε2

1 + b2n(1/n + ε2)
.

In order for Condition 1 to hold, V (θACC, sobs), which has the density N(· ; 0, nσ2ε ), and

W (θ0, Sn), which is equal to
√
n(θε − θ0), should have the same asymptotic distributions.

By decomposing W (θ0, Sn) into ∆1
√
n(Sn − θ0) + ∆2bn(µn − θ0) where

∆1 =
1

1 + b2n(1/n + ε2)
, ∆2 =

√
nbn(1/n + ε2)

1 + b2n(1/n + ε2)
,

it can be seen that the expectation of W (θ0, Sn) is o(1) only when εn = o(b
−1/2
n n−1/4). On

the other hand, the variance of W (θ0, Sn) and nσ2ε having the same limit requires nσ2ε −∆2
1 =

o(1) which holds only when εn = o(n−1/2) or ε−1
n = o(b2nn

−1/2). Because bn = o(
√
n), both

εn = o(b
−1/2
n n−1/4) and ε−1

n = o(b2nn
−1/2) can not hold simultaneously. Therefore Condition 1

is satisfied only when εn = o(n−1/2).

One remedy to reduce the overinflated uncertainty in Πε(θ | sobs) from Algorithms 1 and 3 is

to post-process its sample by the regression adjustment (Beaumont et al., 2002). Likewise, this

adjustment can be applied to Algorithm 2. In the next subsection, we compare these regression

adjusted approximate computing methods.

3·3. Comparison between Algorithm 1 and Algorithm 2 with regression adjustment

For Algorithms 1 and 3, it is known that the distribution of the regression adjusted sample is

able to correctly quantify the posterior uncertainty and yield an accurate point estimate with εn
decaying in the rate of o(a

−3/5
n ), which is slower than o(a

−1/2
n ) (Li & Fearnhead, 2018a). Here,

we suggest applying the same regression adjustment to Algorithm 2 to produce valid inference

on the sample of Algorithm 2 with a larger εn.

Let qε(θ, s) be the joint density of accepted θ and its associated summary statistic in Algorithm

2, i.e.

qε(θ, s) =
rn(θ)fn(s | θ)Kε(s− sobs)∫

Rp×Rd rn(θ)fn(s | θ)Kε(s− sobs) dθds
, (11)
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where θ ∈ R
p and s ∈ R

d. Denote a sample from qε(θ, s) by {(θi, s(i))}i=1,...,N . A new sample

can be obtained as {θi − β̂ε(s
(i) − sobs)}i=1,...,N where β̂ε is the least square estimate of the

coefficient matrix in the linear model

θi = α+ β(s(i) − sobs) + ei, i = 1, . . . , N,

where ei are independent identically distributed errors, α ∈ R
p and β ∈ R

p×d. Let θ∗ACC = θ −
βε(s − sobs), where βε is from the minimizer

(αε, βε) = argminα∈Rp,β∈Rd×pEε

{
‖θ − α− β(s− sobs)‖2 | sobs

}

for expectation under the joint distribution qε(θ, s). The new sample can be seen as a draw from

the distribution of θ∗ACC where (θ, s) ∼ qε(θ, s), but with βε replaced by its estimator. Let θ∗ε be

the expectation of θ∗ACC.

The following theorem states that the regression adjusted Qε has the same favored property

as the adjusted Πε. Here, the regression adjusted Qε, say Q∗
ε(·|Sn = sobs), is the distribution of

θ∗ACC given Sn = sobs.

THEOREM 3. Assume the conditions of Theorem 2 and Condition 10 of the supplemen-

tary materials. If εn = o(a
−3/5
n ) as n→ ∞, Condition 1 is satisfied with V (θ∗ACC, sobs) =

an(θ
∗
ACC − θ∗ε) and W (θ0, Sn) = an(θ

∗
ε − θ0).

In the above, Condition 1 is implied by the following convergence results which generalize

the results in Li & Fearnhead (2018a),

sup
A∈Bp

∣∣∣∣∣

∫

{θ: an(θ−θ∗ε )∈A}
dQ∗

ε(θ | Sn = sobs)−
∫

A
N{t; 0, I(θ0)−1} dt

∣∣∣∣∣ → 0,

in probability, and

an(θ
∗
ε − θ0) → N{0, I(θ0)−1},

in distribution, as n→ ∞. The limit distributions above are the same as those in (9) and (10),

therefore Γ1−α(sobs) constructed using θ∗ACC can achieve the same efficiency as those using

θACC while permitting much larger tolerance levels. Asymptotically, inference based on the re-

gression adjusted Q∗
ε is not affected by an rn(θ) that depends on the data, again illustrating the

computational advantage of Algorithm 2.

3·4. Guidelines for Selecting rn in Algorithm 2

The generality of approximate confidence distribution computing is that it can produce justi-

fiable inferential results with weak conditions on a possibly data-dependent function rn(θ). In

general, one should be careful in choosing rn(θ) to ensure its growth with respect to the sample

size is slower than the growth of the s-likelihood, according to Condition 3. A generic algorithm

to construct rn(θ) based on sub-setting the data is proposed below. Assume that a point estimator

θ̂(z) of θ can be computed for a dataset z of any size.

Algorithm 4. (Minibatch scheme)

1. Choose k subsets of the observations, each with size nν for some 0 < ν < 1.

2. For each subset zi of xobs, compute the point estimate θ̂i = θ̂(zi), for i = 1, . . . , k.

3. Let rn(θ) = (1/kh)
∑k

i=1K
{
h−1‖θ − θ̂i‖

}
, where h > 0 is the bandwidth of the

kernel density estimate using {θ̂1, . . . , θ̂k} and kernel function K .
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By choosing ν < 3/5, we ensure that Conditions 3–5 are met. Furthermore, if θ̂(z) converges

with a rate not faster than that of the summary statistic, then the tolerance level, εn, selected by

accepting a reasonable proportion of simulations is sufficiently small, provided the rate of Sn is

a power function of n. Based on our experience, if n is large one may simply choose ν = 1/2 to

partition the data. For small n, say n < 100, it is better to select ν > 1/2 and overlap the subsets

so that each subset contains a reasonable number of observations.

The choice of θ̂ does not have to be very accurate, since it is only used to construct the ini-

tial estimate, rn(θ). For problems of intractable likelihoods, possible choices of θ̂ include the

point maximizing an easy-to-obtain approximate likelihood or the point minimizing the av-

erage distance between the simulated s and sobs (Meeds & Welling, 2015). However, a poor

choice, for instance, a θ̂ with a large bias, might cause bias in the inference if the mass of

Qε(θ | sobs) is not well covered by the simulated parameter values. For a subset, zi, of the data,

xobs, we suggest choosing the point estimate to be the s-likelihood-based expectation over the

subset, i.e. E{θ | Sn(zi)} ∝
∫
θfn{Sn(zi) | θ}dθ. This choice of θ̂ has two benefits. First, when

the summary statistic satisfies Condition 6, E{θ | Sn(zi)} is asymptotically unbiased. Second,

E{θ | Sn(zi)} converges with the same rate as Sn, which is desirable as discussed above.

For each subset zi of xobs, E{θ | Sn(zi)} can be approximated using the population Monte

Carlo variant of Algorithm 1 (Beaumont et al., 2009; Del Moral et al., 2012). This variant ex-

tends the importance sampling step of Algorithm 3 to a sequence of sampling importance re-

sampling operations, in order to iteratively update the approximate posterior distribution starting

from the prior distribution. For an initial choice of θ̂, say ̂̄θ, let r̄n(θ) be the proposal distribu-

tion constructed by Algorithm 4 together with ̂̄θ. Here the user can now propose from r̄n(θ) in

the first iteration of the algorithm rather than proposing from the prior distribution, helping to

reduce the associated computational cost. This approximation is straightforward to execute in

parallel for multiple subsets and can be applied to Algorithm 2 as well. We call this scheme the

refined-minibatch scheme, since it updates the rn(θ) obtained from the minibatch scheme (i.e.

Algorithm 4) by improving the quality of θ̂. From our experience, the additional computational

cost of the refined version is relatively small compared to the other parts of Algorithm 1 and 2

because a small particle size and several iterations are usually enough to achieve convergence of

the population Monte Carlo algorithm with the proposed techniques. A full study on the choice

of θ̂ is beyond the scope of this paper.

REMARK 2. There is a trade-off in Algorithm 2 between faster computations and guaranteed

frequentist inference. When the growth of rn(θ) is at a similar rate as the s-likelihood while the

sample size n→ ∞, the computing time may be reduced but Algorithm 2 may also risk violating

Conditions 3–5. If these assumptions are violated, the resulting simulations do not necessarily

form a confidence distribution and consequently, inference based on Algorithm 2 may not be

valid in terms of producing confidence sets with guaranteed coverage. However, if Conditions 3–

6 do hold and the observed data is large enough, Theorem 2 shows that regardless of the choice

of rn(θ), Algorithm 2 always produces the same confidence distribution.

4. EMPIRICAL EXAMPLES

4·1. Cauchy data

In Figure 1 we saw how the lack of a sufficient statistic could drastically change inference

resulting from approximate Bayesian computing. In particular, we saw that when applying Al-
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Table 1: Comparison of r-ABC, IS-ABC, and r-ACC without the regression adjustment for in-

ference on θ using the median as the summary statistic and assuming a flat prior on θ. We fix εn
and compare the median acceptance proportions of each algorithm using a Monte Carlo sample

size of 106. Coverage is computed over 300 runs. IS-ABC and r-ACC perform similarly.

r-ABC IS-ABC r-ACC

εn Coverage Acceptance Coverage Acceptance Coverage Acceptance

proportion proportion proportion

0.1 0.973 0.0001 1 0.001 1 0.001
0.01 1 0.001 1 0.008 1 0.008
0.001 1 0.008 1 0.079 1 0.079

gorithm 1, the approximate Bayesian computational posterior is quite different from the target

posterior, p(θ | x) ∝ ∏n
i=1 1/[1 + {(xi − θ)/0.55}2] for both Sn = x̄ and Sn =Median(x).

Now, as a continuation of the example in Figure 1, suppose we observe random data,

(x1, . . . , xn), from a Cauchy(θ, τ) distribution with sample size n = 400. Suppose the (un-

known) data-generating parameter value is (θ0, τ0) = (10, 0.55). Using the coverage of the data-

generating parameter as our metric, we compare the performance of the resulting 95% confidence

intervals/regions from Algorithm 2, denoted r-ACC, to the credible intervals/regions from Algo-

rithm 3, denoted IS-ABC. For the credible intervals/regions of IS-ABC, we also compute the

corresponding Bayesian coverage probabilities.

The reason we choose to compare the rejection sampling version of approximate confidence

distribution computing to the importance sampling version of approximate Bayesian computing

is illustrated in Table 1. In this table, we fix εn (thus varying the number of retained θ values, N ,

in each run). Both Algorithm 1 (r-ABC) and Algorithm 2 (r-ACC) suffer from over-coverage,

but the acceptance rates for r-ACC are much better and are comparable to Algorithm 3 (IS-ABC)

without the regression adjustment.

For reference, all experiment settings mentioned below are summarized in Table 2. The prior

distribution used in each of the Bayesian methods is the Jeffrey’s prior for the location-scale

family. We also compute the median width of the intervals from each experiment. Coverage pro-

portions closer to the 95% nominal level and having smaller width, indicative of higher efficiency,

are preferred. Only those results using the regression adjusted sample are reported because in all

cases, intervals constructed by the unadjusted samples are much wider and over-cover the true

parameter values for almost all acceptance proportions as demonstrated in Table 1. This aligns

with the discussion in Section 3·3. Under each of these settings, rn(θ) for r-ACC is constructed

using Algorithm 4 with ν = 1/2.

First, we consider inference for one or both of the unknown parameters in settings (i)-(iii)

in Table 2. We choose the summary statistics as the sample median and sample median abso-

lute deviation for the location and scale parameters, respectively. These summary statistics are

asymptotically normal and unbiased, and satisfy Condition 6; thus Theorem 3 guarantees at least

nominal coverage for the intervals/regions of r-ACC, as observed in Table 3.A.

For the first three inference problems in Table 3, approximate confidence distribution com-

puting (i.e. Algorithm 2) and importance sampling approximate Bayesian computing (i.e. Algo-

rithm 3) perform very similarly. This is not surprising, since the data size is large enough that

the asymptotic behaviors of all estimates are similar. As discussed in Section 3·3, Qε(· | sobs)
and Πε(· | sobs) share the same limiting normal distribution and thus the credible intervals/region
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Table 2: Experiment settings of Example 1. Improper priors are considered for (i)–(iv), and

t4(µ, σ) denotes the Student’s t density with degree of freedom four, location µ and scale σ.

The summary statistic MAD(x) is the sample median absolute deviation.

Unknown parameter Prior density Summary statistic

(i) θ 1 median(x)
(ii) τ τ−1Iτ>0 MAD(x)
(iii) (θ, τ) τ−1Iτ>0 {median(x),MAD(x)}
(iv) θ 1 x
(v) θ t4(θ0, 1) x
(vi) θ t4(θ0, 3) x
(vii) θ t4(θ0 + 3, 3) x

of the approximate posterior from IS-ABC are similar to the confidence intervals/region of the

confidence distribution from r-ACC.

For the last four inference problems in Table 2, we wish to conduct inference on the location

parameter only but we choose a less informative summary statistic, the sample mean. This sum-

mary statistic follows a Cauchy(θ, τ) distribution and thus does not satisfy Condition 6. However,

by Theorem 1, we are still able to produce confidence intervals with nominal coverage using r-

ACC. In Table 3, we compare the performance of the confidence intervals from Algorithm 2,

using the minibatch scheme to define rn(θ), to the credible intervals of Algorithm 3, using four

different choices for π(·). For IS-ABC we use an uninformative prior in setting (iv), two infor-

mative priors in settings (v) and (vi) and a misspecified prior in setting (vii), to study the case

where we do not meet the conditions for a Bernstein von-Mises type of theorem. For each exper-

iment, even though the summary statistic is not asymptotically normal, the frequentist coverage

using Algorithm 2 is closer to the 95% nominal level than the coverage of the credible intervals

from Algorithm 3, especially when the prior is misspecified as in setting (vii). Furthermore, the

approximate confidence distribution intervals are more efficient than the credible intervals re-

sulting from approximate Bayesian computing, the former having widths about half the widths

of the latter except in case (v) where the prior is highly informative. In case (v), although both

confidence intervals have similar width, the latter shows more overcoverage.

4·2. Ricker model

A Ricker map is a non-linear dynamical system, often used in Ecology, that describes how

a population changes over time. The population Nt is noisily observed and is described by the

following model,

yt ∼ Pois(φNt),

Nt = rNt−1e
−Nt−1+et , et ∼ N(0, σ2),

where t = 1, . . . , T . Parameters r, φ and σ are positive constants, interpreted as the intrinsic

growth rate of the population, a scale parameter and the environmental noise. This model is

statistically challenging since its likelihood function is intractable when σ is non-zero and highly

irregular in certain regions of the parameter space. Wood (2010) suggests a summary statistic-

based inference, instead of likelihood-based inference, to overcome the noise-driven nature of the

model. Fearnhead & Prangle (2012) applies Algorithm 3 with the regression adjustment on the

above model. In this section, we apply Algorithm 2 with the regression adjustment and compare

its performance with that of regression-adjusted Algorithm 3.
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Table 3: Coverage proportions and the median width/volume of confidence or credible inter-

vals/regions, calculated using 300 datasets under settings of Table 2. For credible intervals, both

the frequentist coverage proportions and the Bayesian coverage probabilities are reported, the

latter are given in the parenthesis. Each dataset contains 400 observations, and in each algorithm

run, a Monte Carlo sample of size 105 is simulated. The nominal level is 95%.

(A) Using an informative summary statistics for θ and τ .

r-ACC IS-ABC

Setting Acceptance Coverage Width/ Coverage Width/

proportion Volume Volume

(i) θ/ Median
0.005 0.947 0.162 0.950 (0.955) 0.169
0.1 0.947 0.165 0.950 (0.957) 0.17
0.4 0.947 0.166 0.950 (0.958) 0.17

(ii) τ / MAD
0.005 0.950 0.163 0.947 (0.955) 0.169
0.1 0.937 0.165 0.950 (0.958) 0.170
0.4 0.943 0.164 0.950 (0.957) 0.171

(iii) (θ, τ) / (Median,MAD)
0.005 0.913 0.059 0.917 0.059
0.1 0.933 0.100 0.92 0.100
0.4 0.94 0.141 0.927 0.141

(B) Using an un-informative summary statistic for θ, i.e. Sn = x̄.

r-ACC IS-ABC

Setting Acceptance proportion Coverage Width Coverage Width

(iv) 1θ∈R

0.005 0.970 2.56 0.983 (1) 4.65
0.1 0.973 2.56 0.973 (1) 5.39
0.4 0.963 2.65 0.967 (1) 5.58

(v) t4(θ0, 1)
0.005 0.970 2.56 1 (1) 2.69
0.1 0.973 2.56 1 (1) 2.65
0.4 0.963 2.65 1 (1) 2.76

(vi) t4(θ0, 3)
0.005 0.970 2.56 1 (1) 3.93
0.1 0.973 2.56 1 (1) 4.32
0.4 0.963 2.65 1 (1) 4.42

(vii) t4(θ0 + 3, 3)
0.005 0.970 2.56 0.93 (1) 4.40
0.1 0.973 2.56 0.89 (1) 5.33
0.4 0.963 2.65 0.89 (1) 5.61

We consider inference on the unknown parameter θ = (r, φ, σ). A total of four different meth-

ods are compared. (i) Algorithm 2 with the regression adjustment; (ii) Algorithm 3 with the

regression adjustment; both using Algorithm 4 to choose rn(θ). (iii) Algorithm 2 with the re-

gression adjustment; (iv) Algorithm 3 with the regression adjustment; both using Algorithm 4

with the refinement to choose rn(θ). The main computational cost of all four algorithms is as-
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sociated with the calculation of the point estimate in Algorithm 4, for which we select the max-

imum synthetic likelihood estimator as defined in Wood (2010). Because each point estimate

requires the simulation of a Markov chain Monte Carlo sample for the synthetic likelihood, each

of the four algorithms spend over 50% of CPU time on obtaining rn(θ). Relative to this cost,

the additional cost of the population Monte Carlo algorithm in the refined-minibatch scheme is

negligible when using 104 particles and 10 iterations run in parallel. In this example, the para-

metric bootstrap method is not feasible due to the large number of point estimates it would need

to calculate.

Following the settings used in Wood (2010), our dataset contains observations from t = 51 to

100, generated using parameter value θ = (e3.8, 0.3, 10), and using the same summary statistic

therein. We assume θ follows an improper uniform prior distribution over all positive values. In

Algorithm 4, each minibatch has size 10 and a total number of 40 batches are used. They are cho-

sen with overlaps in order to ensure a reasonable number of point estimates are available in the

current small data size setting. Results are given in Table 4. Because the regression adjustment

methods are better in all cases, to save time and space we only report here results for regression

adjustment methods. The simulation results without the minibatch refinement, show that IS-ABC

has somewhat better coverage than r-ACC since the point estimates (and thus rn(·)) are biased in

the small data size setting. However, with the refined-minibatch scheme, the width of the confi-

dence intervals for r-ACC are smaller than those in IS-ABC in all cases, although both methods

are over-coverage (here the target is 0.95). This result illustrates the benefit of improving rn(θ)
through the population Monte Carlo procedure on problems with poor initial choice of rn(θ). In

the Cauchy example above, using the refined-minibatch scheme would improve upon the results

however the improvement would be minimal and not as strong as in the Ricker example.

5. DISCUSSION

In this paper, we re-frame the well-studied popular approximate Bayesian computing method

within a frequentist context and justify its performance by standards set on the frequency cover-

age rate. In doing so, we develop a new computational technique called approximate confidence

distribution computing, a likelihood-free method that does not depend on any Bayesian assump-

tions such as prior information. Rather than compare the output to a target posterior distribution,

the new method quantifies the uncertainty in estimation by drawing upon a direct connection to

a confidence distribution. This connection guarantees that confidence intervals/regions based on

approximate confidence distribution computing methods attain the frequentist coverage property

even in cases where one has a finite sample size and the cases when the summary statistic used

in the computing is not sufficient. Thus we provide theoretical support for inference from ap-

proximate confidence distribution methods which include, but are not limited to, the special case

where we do have prior information (i.e. approximate Bayesian computing). Furthermore, in the

case where the selected summary statistic is sufficient, inference based on the results of Algo-

rithm 2 is equivalent to maximum likelihood inference. In addition to providing sound theoretical

results for inference, the framework of approximate confidence distribution computing sets the

user up for better computational performance by allowing the data to drive the algorithm through

the choice of rn(θ). The potential computational advantage of our method has been illustrated

through simulation examples.

Different choices of summary statistics often lead to different approximate Bayesian computed

posteriors πε(θ | sobs) in Algorithms 1 and 3 and different approximate confidence distribu-

tion qε(θ | sobs) in Algorithm 2. We find the philosophical interpretation of the results admitted

through approximate confidence distribution computing to be more natural than the Bayesian in-
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Table 4: Coverage proportions and the median width of confidence/coverage intervals calculated

using 150 datasets for the four different methods of the Ricker model in Example 2 with δ =
3/5 for r-ACC and a flat prior for IS-ABC. Each dataset contains 50 observations, and in each

algorithm run, a Monte Carlo sample of size 106 is simulated. The nominal level is 95%.

(A) Using Algorithm 4 to construct rn(θ)
r-ACC IS-ABC

Acceptance proportion Coverage Width Coverage Width

logR
0.005 0.91 0.59 0.91 0.72
0.1 0.91 0.59 0.99 0.89
0.4 0.9 0.61 0.99 0.99

log σ
0.005 0.96 2.46 0.95 2.59
0.1 0.95 2.78 0.96 2.90
0.4 0.94 2.9 0.97 2.89

log φ
0.005 0.89 0.21 0.92 0.24
0.1 0.91 0.21 0.94 0.30
0.4 0.91 0.23 0.97 0.33

(B) Using the refined version of Algorithm 4 to construct rn(θ).
r-ACC IS-ABC

Acceptance proportion Coverage Width Coverage Width

logR
0.005 0.96 0.85 0.97 0.95
0.1 0.99 0.97 0.99 1.24
0.4 1.00 1.17 0.99 1.96

log σ
0.005 0.96 1.3 0.97 1.63
0.1 0.97 1.37 0.99 1.92
0.4 1.00 1.51 0.99 2.29

log φ
0.005 0.96 0.28 0.97 0.31
0.1 0.99 0.35 0.99 0.43
0.4 0.98 0.55 1.00 0.86

terpretation of approximate Bayesian computed posteriors. Within a frequentist setting, it makes

sense to view the many different potential confidence distributions produced by our method

resulting from different choices of summary statistics as various choices of (distribution) estima-

tors. However, within the Bayesian framework, there is no clear way to choose from among the

different approximate posteriors due to various choices of summary statistics. In particular, there

is an ambiguity in defining the probability measure on the joint space (P,X ) when choosing

among different approximate Bayesian computed posteriors. Rather than engaging in a pursuit

to define a moving target such as this, our method maintains a clear frequentist interpretation

thereby offering a consistently cohesive interpretation of likelihood-free methods.

In Section 3·4, one may wonder if an estimate, θ̂, can be computed, then why not apply the

parametric bootstrap method to construct confidence regions for θ as opposed to using Algo-

rithm 2? Although no likelihood evaluation is needed, this bootstrap method has two drawbacks.
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First, the parametric bootstrap method is heavily affected by the quality of θ̂. For example, a

bootstrapped confidence interval is based on quantiles of θ̂ from simulated datasets. A poor esti-

mator θ̂ typically leads to poor performing confidence sets. In contrast, in Section 3·4, θ̂ is only

used to construct the initial function estimate which is then updated by the data. Second, when

it is more expensive to obtain θ̂ than the summary statistic, the parametric bootstrap method is

computationally more costly than Algorithm 2, since θ̂ needs to be calculated for each pseudo

dataset. Example 4.2 in Section 4 provided an example of this type of scenario.

The function rn(θ) serves as the role of an initial ‘distributional estimate’. Even in the in-

stance where rn(θ) does not yield reasonable acceptance probabilities for Algorithm 2, many of

the established techniques used in approximate Bayesian computing can be adapted naturally to

Algorithm 2 to improve computational performance. For example, the likelihood-free Markov

chain Monte Carlo (Marjoram et al., 2003) and the dimension-reduction methods on the sum-

mary statistics (Fearnhead & Prangle, 2012), among others, can improve Algorithm 2 without

sacrificing the inferential guarantees explored in this paper. Furthermore, these variants of Algo-

rithm 2 will be more efficient than the corresponding variants of Algorithm 1, since rn(θ) is less

dispersed than the prior distribution.
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APPENDIX 1

Example of a confidence distribution

Consider the following example taken from Singh et al. (2007). Suppose X1, . . . , Xn is a sample from

N(µ, σ2) where both µ and σ2 are unknown. A confidence distribution for parameter µ is the function

Hn(y) = Ft(n−1)

{
(y − X̄)/(sn/

√
n)
}

where Ft(n−1)
(·) is the cumulative distribution function of a Stu-

dent’s t-random variable with n− 1 degrees of freedom and X̄ and s2n are the sample mean and variance,

respectively. Here Hn(y) is a cumulative distribution function in the parameter space of µ from which we

can construct confidence intervals of µ at all levels. For example, for any α ∈ (0, 1), one sided confidence

intervals for µ are (∞, H−1
n (α)] and [H−1

n (α),∞). Similarly, a confidence distribution for parameter σ2

is the functionHn(σ
2) = 1− Fχ2

n−1

[
{(n− 1)s2n}/(σ2)

]
, where Fχ2

n−1
(·) is the distribution function of

a Chi-squared random variable with n− 1 degrees of freedom. Again, Hn(σ
2) is a cumulative distribu-

tion function in the parameter space of σ2 from which we can construct confidence intervals of σ at all

levels.
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Lemma 1

Proof. The density of πε can be expressed by

πε(θ|sobs) ∝
∫

Rd

π(θ)fn(s | θ)Kε(s− sobs)ds

= π(θ)

∫ {
fn(sobs | θ) +Dfn(s̄ | θ)T (s̄− s)

+ (1/2)(s̄− s)THfn(s̄ | θ)(s̄− s)
}
Kε(s− sobs)ds

∝ π(θ)fn(sobs|θ) +O(ε2),

where Dfn(· | θ) and Hfn(· | θ) are the vector of first derivatives and matrix of second derivatives of

fn(· | θ), respectively, and s̄ is a value/vector between sobs and sobs + uε. The equality above holds due

to a Taylor expansion of fn(· | θ) with respect to sobs and the final proportion holds using the substitution

u = (s− sobs) and that
∫
Rd Kε(u) du = 1 and

∫
Rd uKε(u) du = 0. �

Remark 1 in Section 2

Proof. By its definition, Hn(·) = H(·, sobs) is a sample-dependent cumulative distribution func-

tion on the parameter space. We also have Hn(θ0) = H(θ0, sobs) = pr∗(2θ̂S − θ ≤ θ0 | Sn = sobs) =

pr∗(θ − θ̂S ≥ θ̂S − θ0 | Sn = sobs) = 1−G(θ̂S − θ0). Since G(t) = pr(θ̂S − θ ≤ t | θ = θ0), we have

G(θ̂S − θ0) ∼ Unif(0, 1) under the probability measure of the random sample population. Thus, as a

function of the random Sn, Hn(θ0) = Hn(θ0, Sn) ∼ Unif(0, 1). By the univariate confidence distribu-

tion definition, Hn(·) is a confidence distribution function.

Furthermore, Hn(·) can provide us confidence intervals of any level. In particular, for any α ∈
(0, 1), pr{θ ≤ H−1

n (1− α) | θ = θ0} = pr{Hn(θ) ≤ 1− α | θ = θ0} = 1− α. Thus, (−∞, H−1
n (1 −

α)] is a (1− α)-level confidence interval. Note that, Hn(2θ̂S − θα) = pr∗(2θACC − θ ≤ 2θ − θα | Sn =

sobs) = 1− pr∗(θ < θα | Sn = sobs) = 1− α. So, H−1
n (1− α) = 2θ̂S − θα. Therefore, (−∞, 2θ̂S −

θα] is also a (1− α)-level confidence interval for θ. �

Lemma 2

Proof. First note that

| pr{θ ∈ Γ1−α(Sn) | θ = θ0} − (1 − α) |=| pr{W (θ, Sn) ∈ A1−α | θ = θ0} − (1− α) |
≤ | pr∗{V (θ, Sn) ∈ A1−α | Sn = sobs} − (1 − α) |

+ | pr{W (θ, Sn) ∈ A1−α | θ = θ0} − pr∗{V (θ, Sn) ∈ A1−α | Sn = sobs} |
and by the definition of A1−α in (4), | pr∗{V (θ, Sn) ∈ A1−α | Sn = sobs} − (1 − α) |= o(δ′), al-

most surely for a pre-selected precision number, δ′ > 0. Therefore, by Condition 1, we have | pr{θ ∈
Γ1−α(Sn) | θ = θ0} − (1 − α) |= δ where δ = max{δε, δ′}. Furthermore, if Condition 1 holds almost

surely, then | pr{θ ∈ Γ1−α(Sn) | θ = θ0} − (1− α) |= o(δ), almost surely. �

Theorem 1

Proof. Setting W (θ, Sn) = T (θ, Sn) and by (7), we immediately have

pr{W (θ, Sn) ∈ A | θ = θ0} =

∫

t∈A

g(t)dt {1 + o(δ
′′

)}, (A1)

for any Borel set A ⊂ R
d.

Let f(s|θ) be the conditional density of Sn, given θ. Note that t and Sn have the same dimen-

sion. For a given θ and with the variable transformation T = T (θ, Sn), the density functions g(t)
and f(st,θ|θ) are connected by a Jacobi matrix: f(st,θ|θ)|T (1)(θ, st,θ)|−1 = g(t){1 + o(δ

′′

)}, where

T (1)(θ, s) = ∂
∂sT (θ, s) and st,θ is the solution of t = T (θ, s).

In Algorithm 2, we simulate θ′ ∼ rn(θ) and s′ = Sn(x
′) with x′|θ = θ′ ∼Mθ′ . Furthermore, we only

keep those pairs (θ′, s′) with the kernel probability Kε(s
′ − sobs). Thus, the joint density function of a
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copy of (θ′, s′) that are simulated and kept by Algorithm 2, conditional on observing Sn = sobs, is

(θ′, s′)|Sn = sobs ∝ rn(θ
′)fn(s

′ | θ′)Kε(s
′ − sobs).

Now, let T ′ = T (θ′, s′). Perform a variable transformation from (θ′, s′) to (θ′, T ′) with the Jacobi term

|T (1)(θ′, sT ′,θ′)|−1, where sT ′,θ′ is a solution to T ′ = T (θ′, s). Then, the joint conditional density of

(θ′, T ′), conditional on Sn = sobs, is

(θ′, T ′)|Sn = sobs ∝ rn(θ
′)fn(sT ′,θ′ | θ′)|T (1)(θ′, sT ′,θ′)|−1Kε(sT ′,θ′ − sobs).

= rn(θ
′)g(T ′)Kε(sT ′,θ′ − sobs){1 + o(δ

′′

)}.

Therefore, T ′ = T (θ′, s′), the approximate pivot statistic generated from Algorithm 2, with distribution

conditional on Sn = sobs:

T ′|Sn = sobs ∝ g(t′){1 + o(δ
′′

)}
∫
rn(θ

′)Kε(st′,θ′ − sobs)dθ
′

If requirement (8) is satisfied, then we have

T ′|Sn = sobs ∼ g(T ′){1 + o(δ
′′

)}{1 + o(δ
′

ε)}.

Set V (θ′, s′) = T ′ = T (θ′, s′) and denote by θACC the θ′ accepted by the ACC algorithm. We have

pr∗{V (θACC, Sn) ∈ A | Sn = sobs} =

∫

t∈A

g(t)dt{1 + o(δ
′′

)}{1 + o(δ
′

ε)}

Thus, together with (A1), Condition 1 is satisfied for δε = max{δ′′

, δ
′

ε}. Furthermore, by Lemma 2, the

rest of the statements in the theorem also hold. �

Corollary 1

Proof. Here we prove requirement (8) for Part 2, data from a scale family. The proofs for Part 1 (loca-

tion family) and Part 3 (location and scale family) are similar and thus omitted.

In particular, in a scale family suppose Sn has the density (1/σ)g2(Sn/σ). Then T = T (σ, Sn) =
Sn/σ ∼ g2(t) is a pivot. So, for any given (t, σ) pair we have st,σ = tσ. Thus, with variable transforma-

tion u = tσ − sobs we have
∫
rn(σ)Kε (sT,σ − sobs) dσ =

∫
1

σ
Kε (sT,σ − sobs) dσ

=

∫
1

u+ sobs
Kε (u+ sobs − sobs) du

which is free of t. Therefore, the requirement (8) is satisfied in this case. Furthermore, the function

H2(σ̂
2
S , x) = 1−

∫ σ̂2
S/x

0
g2(w)dw is a confidence distribution for σ2 since (1) given S, H2(σ̂

2
S , x) is a

distribution function on the parameter space (0,∞) and (2) given x = σ2
0 , H2(σ̂

2
S , x) ∼ U(0, 1). �

Additional Conditions and notations for the remaining proofs

Let N(x;µ,Σ) be the normal density at x with mean µ and variance Σ, and f̃n(s | θ) =
N{s; s(θ), A(θ)/a2n}, the asymptotic distribution of the summary statistic. We define an,ε = an if

limn→∞ anεn <∞ and an,ε = ε−1
n otherwise, and cε = limn→∞ anεn, both of which summarize how

εn decreases relative to the converging rate, an, of Sn in Condition 6 below. Define the standardized ran-

dom variablesWn(Sn) = anA(θ)
−1/2{Sn − η(θ)} andWobs = anA(θ)

−1/2{sobs − η(θ)} according to

Condition 6 below. Let fWn
(w | θ) and f̃Wn

(w | θ) be the density for Wn(Sn) when Sn ∼ fn(· | θ)
and f̃n(· | θ) respectively. Let Bδ = {θ | ‖θ − θ0‖ ≤ δ} for δ > 0. Define the initial density truncated

in Bδ , i.e. rn(θ)Iθ∈Bδ
/
∫
Bδ
rn(θ) dθ, by rδ(θ). Let t(θ) = an,ε(θ − θ0) and v(s) = ε−1

n (s− sobs). For

any A ∈ B
p where Bp is the Borel sigma-field on R

p, let t(A) be the set {φ : φ = t(θ) for some θ ∈ A}.

For a non-negative function h(x), integrable in R
l, denote the normalized function h(x)/

∫
Rl h(x) dx by
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h(x)(norm). For a function h(x), denote its gradient by Dxh(x), and for simplicity, omit θ from Dθ . For

a sequence xn, we use the notation xn = Θ(an) to mean that there exist some constants m and M such

that 0 < m <| xn/an |< M <∞.

CONDITION 6. There exists a sequence an, satisfying an → ∞ as n→ ∞, a d-dimensional vector

η(θ) and a d× d matrix A(θ), such that for Sn ∼ fn(· | θ) and all θ ∈ P0,

an{Sn − η(θ)} → N{0, A(θ)}, as n→ ∞,

in distribution. We also assume that sobs → η(θ0) in probability. Furthermore, it holds that (i) η(θ) and

A(θ) ∈ C1(P0), and A(θ) is positive definite for any θ; (ii) for any δ > 0 there exists a δ′ > 0 such that

‖η(θ)− η(θ0)‖ > δ′ for all θ satisfying ‖θ − θ0‖ > δ; and (iii) I(θ) ,
{
∂
∂θη(θ)

}T
A−1(θ)

{
∂
∂θ η(θ)

}

has full rank at θ = θ0.

CONDITION 7. The kernel satisfies (i)
∫
vKε(v)dv = 0; (ii)

∏l
k=1 vikKε(v)dv <∞ for any coordi-

nates (vi1 , . . . , vil) of v and l ≤ p+ 6; (iii)Kε(v) ∝ Kε(‖v‖2Λ) where ‖v‖2Λ = vTΛv and Λ is a positive-

definite matrix, and K(v) is a decreasing function of ‖v‖Λ; (iv) Kε(v) = O(exp{−c1‖v‖α1}) for some

α1 > 0 and c1 > 0 as ‖v‖ → ∞.

CONDITION 8. There exists αn satisfying αn/a
2/5
n → ∞ and a density rmax(w) satisfying Condition

7(ii)–(iii) where Kε(v) is replaced with rmax(w), such that supθ∈Bδ
αn | fWn

(w | θ)− f̃Wn
(w | θ) |≤

c3rmax(w) for some positive constant c3.

CONDITION 9. The following statements hold: (i) rmax(w) satisfies Condition 7(iv); and (ii)

supθ∈BC
δ
f̃Wn

(w | θ) = O(e−c2‖w‖α2
) as ‖w‖ → ∞ for some positive constants c2 and α2, and A(θ)

is bounded in P .

CONDITION 10. The first two moments,
∫
Rd sf̃n(s | θ)ds and

∫
Rd s

T sf̃n(s | θ)ds, exist.

Proof of Theorem 2

Let Q̃(θ ∈ A | s) =
∫
A
rδ(θ)f̃n(s | θ) dθ/

∫
Rp rδ(θ)f̃n(s | θ) dθ.

LEMMA 3. Assume Condition 2–8. If εn = O(a−1
n ), for any fixed ν ∈ R

d and small enough δ,

sup
A∈Bp

∣∣∣∣Q̃{an(θ − θ0) ∈ A | sobs + εnν} −
∫

A

N [t;β0{A(θ0)1/2Wobs + cεν}, I(θ0)−1]dt

∣∣∣∣ → 0,

in probability as n→ ∞, where β0 = I(θ0)
−1Dη(θ0)

TA(θ−1
0 ).

Proof. With Lemma 1 from Li & Fearnhead (2018a), it is sufficient to show that

sup
A∈Bp

| Q̃{t(θ) ∈ A | sobs + εnν} − Π̃{t(θ) ∈ A | sobs + εnν} |= oP (1),

where Π̃ denotes Q̃ using rn(θ) rather than a prior π(θ) with a density satisfying Condition 2. With the

transformation t = t(θ) and v = v(s), the left hand side of the above equation can be written as

sup
A∈Bp

|
∫
A
rδ(θ + a−1

n t)f̃n(sobs + εnν | θ + a−1
n t)dt

∫
Rp rδ(θ + a−1

n t)f̃n(sobs + εnν | θ + a−1
n t)dt

− (A2)

∫
A π(θ + a−1

n t)f̃n(sobs + εnν | θ + a−1
n t)dt

∫
Rp π(θ + a−1

n t)f̃n(sobs + εnν | θ + a−1
n t)dt

| .
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For a function τ : Rp → R, define the following auxiliary functions,

φ1{τ(θ);n} =

∫
t(Bδ)

|τ(θ + a−1
n t)− τ(θ)|f̃n(sobs + εnν | θ + a−1

n t) dt
∫
t(Bδ)

τ(θ + a−1
n t)f̃n(sobs + εnν | θ + a−1

n t) dt
,

φ2{τ(θ);n} =
τ(θ)

∫
t(Bδ)

f̃n(sobs + εnν | θ + a−1
n t)dt

∫
t(Bδ)

τ(θ + a−1
n t)f̃n(sobs + εnν | θ0 + a−1

n t)dt
.

Then by adding and subtracting φ2{τ−pn rδ(θ);n}φ2{π(θ);n} in the absolute sign of (A3), (A3) can be

bounded by

φ1{τ−pn rδ(θ);n} + φ1{π(θ);n}φ2{τ−pn rδ(θ);n} + φ1{τ−pn rδ(θ);n}φ2{π(θ);n}+ φ1{π(θ);n}.

Consider a class of function τ(θ) satisfying the following conditions:

There exists a series {kn}, such that supθ∈P0
‖k−1
n Dτ(θ)‖ <∞ and kn = o(an);

τ(θ0) > 0 and τ(θ) ∈ C1(Bδ).
By Conditions 2–5, τ−pn rδ(θ) and π(θ) belong to the above class. Then if φ1{τ(θ);n} is op(1) and

φ2{τ(θ);n} is Op(1), (A3) is op(1) and the lemma holds.

First, from (ii), there exists an open set ω ⊂ Bδ such that infθ∈ω τ(θ) > c1, for a constant c1 > 0.

Then for φ2{τ(θ);n}, it is bounded by

τ(θ)

c1
∫
t(ω)

f̃n(sobs + εnν | θ0 + a−1
n t)(norm)dt

.

From equation (7) in the supplementary material of Li & Fearnhead (2018b), f̃n(sobs + εnν | θ + a−1
n t)

can be written in the following form,

adnf̃n(sobs + εnν | θ + a−1
n t) =

1

‖Bn(t)‖1/2
N [Cn(t){An(t)t− bnν − c2}; θ, Id], (A3)

where An(t) is a series of d× p matrix functions, {Bn(t)} and {Cn(t)} are a series of d× d matrix

functions, bn converges to a non-negative constant and c2 is a constant, and the minimum of absolute

eigenvalues ofAn(t) and eigenvalues ofBn(t) andCn(t) are all bounded and away from 0. Then for fixed

ν, by continuous mapping, (A3) is away from zero with probability one. Therefore φ2{τ(θ);n} = OP (1).
Second, by Taylor expansion, τ(θ + a−1

n t) = τ(θ) + a−1
n Dτ(θ + ett)t, where ‖et‖ ≤ a−1

n . Then

φ1{τ(θ);n} =
knφ2{τ(θ);n}

anτ(θ)

∫
t(Bδ)

|k−1
n Dτ(θ + ett)t|f̃n(sobs + εnν | θ + a−1

n t) dt
∫
t(Bδ)

f̃n(sobs + εnν | θ + a−1
n t) dt

≤ knφ2{τ(θ);n}
anτ(θ)

sup
θ∈Bδ

‖k−1
n Dτ(θ)‖

∫
t(Bδ)

‖t‖adnf̃n(sobs + εnν | θ + a−1
n t)dt

∫
t(Bδ)

adnf̃n(sobs + εnν | θ + a−1
n t) dt

, (A4)

where the inequality holds by the triangle inequality. By the expression (A3) and Lemma 7 in the supple-

mentary material of Li & Fearnhead (2018b), the right hand side of (A4) is OP (1). Then together with

φ2{τ(θ);n} = ΘP (1), φ1{τ(θ);n} = oP (1). Therefore the Lemma holds. �

Define the joint density of (θ, s) in Algorithm 2 and its approximation, where the s-likelihood is replaced

by its Gaussian limit and rn(θ) by its truncation, by qε(θ, s) and q̃ε(θ, s). It is easy to see that,

qε(θ, s) =
rn(θ)fn(s|θ)Kεn(s− sobs)∫

Rp×Rd rn(θ)fn(s|θ)Kεn(s− sobs) dθds
,

q̃ε(θ, s) =
rδ(θ)f̃n(s|θ)Kεn(s− sobs)∫

Rp×Rd rδ(θ)f̃n(s|θ)Kεn(s− sobs) dθds
.
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Let Q̃ε(θ ∈ A | sobs) be the approximate confidence distribution function,
∫
A

∫
Rd q̃ε(θ, s) dsdθ.

With the transformation t = t(θ) and v = v(s), let q̃ε,tν(t, v) = τ−pn rδ(θ + a−1
n,εt)f̃n(sobs + εnν | θ +

a−1
n,εt)Kε(ν) be the transformed and unnormalized q̃ε(θ, s), and q̃A,tv(h) =

∫
A

∫
Rd h(t, v)q̃ε,tν(t, v) dvdt

for any function h(·, ·) in R
p × R

d. Denote the factor of q̃ε,tν(t, v), τ
−p
n rδ(θ + a−1

n,εt), by γn(t).
Let γ = limn→∞ τ−pn rδ(θ) and γ(t) = limn→∞ τ−pn rδ(θ + τ−1

n t), the limits of γn(t) when an,ε =
an and an,ε = τn respectively. By Condition 3 and 4, γ(t) exists and γ is non-zero with posi-

tive probability. Here several functions of t and v defined in (Li & Fearnhead, 2018a, proofs for

Section 3.1) and relate to the limit of q̃ε,tν(t, v) are used, including g(v;A,B, c), gn(t, v), Gn(v)
and g′n(t, v). Furthermore several functions defined by integration as following are used: for any

A ∈ B
p, let gA,r(h) =

∫
Rd

∫
t(A) h(t, v)γn(t)gn(t, v) dtdv, Gn,r(v) =

∫
t(Bδ)

γn(t)gn(t, v) dt, qA(h) =∫
A

∫
Rd h(θ, s)rn(θ)fn(s | θ)Kε(s− sobs)ε

−d
n dsdθ and q̃A(h) =

∫
A

∫
Rd h(θ, s)rδ(θ)f̃n(s | θ)Kε(s−

sobs)ε
−d
n dsdθ, which generalize those defined in (Li & Fearnhead, 2018a, proofs for Section 3.1) for

the case rn(θ) = π(θ).

LEMMA 4. Assume Condition 2–7. If εn = o(a
−1/2
n ), then

(i)
∫
Rd

∫
t(Bδ)

|q̃ε,tν(t, ν)− γn(t)gn(t, ν)| dtdν = op(1);

(ii) gBδ,r(1) = ΘP (1);
(iii) q̃Bδ,tv(t

k1vk2)/q̃Bδ,tv(1) = gBδ,r(t
k1vk2)/gBδ,r(1) +OP (a

−1
n,ε) +OP (a

2
nε

4
n) for k1 and k2 ??

(iv) q̃Bδ
(1) = τpna

d−p
n,ε

{∫
t(Bδ)

∫
Rd γn(t)gn(t, ν)dτdν +OP (a

−1
n,ε) +OP (a

2
nε

4
n)
}

.

Proof. These results generalize Lemma 2 in Li & Fearnhead (2018a) and Lemma 5 in Li & Fearnhead

(2018b). In Lemma 2 of Li & Fearnhead (2018a) where γn(t) = π(θ + a−1
n,εt), (i) holds by expanding

q̃ε,tν(t, v) according to the proof of Lemma 5 of Li & Fearnhead (2018b). Here the lines can be fol-

lowed similarly by changing the terms involving π(θ) in equations (10) and (11) in the supplements of

Li & Fearnhead (2018b). Equation (10) is replaced by

γn(t)

| A(θ + a−1
n,εt) |1/2

=
γn(t)

| A(θ) |1/2 + a−1
n,εγn(t)D

1

| A(θ + et) |1/2
t,

where ‖eτ‖ ≤ δ, and this leads to replacing π(θ)
∫
τ(Bδ)×Rd gn(t, ν)dtdν in equation (11) by∫

τ(Bδ)×Rd γn(t)gn(t, ν)dtdν. These changes have no effect on the arguments therein since

supt∈t(Bδ)
γn(t) = OP (1) by Condition 3. Therefore (i) holds.

For (ii), By Condition 4 and Lemma 2 of Li & Fearnhead (2018a), there exists a δ′ < δ
such that inft∈t(Bδ′ )

γn(t) = Θp(1) and
∫
Rd

∫
t(Bδ′ )

gn(t, ν) dtdv = Θp(1). Then since gBδ,r(1) ≥
inft∈t(Bδ′ )

γn(t)
∫
Rd

∫
t(Bδ′ )

gn(t, ν) dtdν, (ii) holds.

For (iii), q̃Bδ,tv(t)/q̃Bδ,tv(1) can be expanded by following the arguments in the proof of Lemma 5

of Li & Fearnhead (2018b). For q̃Bδ,tv(t
k1vk2)/q̃Bδ,tv(1), it can be expanded similarly as in the proof of

Lemma 4 of Li & Fearnhead (2018a).

For (iv), γn(t) plays the same role as π(θ) in the proof of Lemma 5 in Li & Fearnhead (2018b), and

the arguments therein can be followed exactly. The term τpn is from the definition of γn(t) that rn(θ +
a−1
n,εt) = τpnγn(t). �

Define the expectation of θ with distribution Q̃ε(θ ∈ A | sobs) as θ̃ε , and that of θ∗ACC with density

q̃ε(θ, s) as θ̃∗ε . Let EG,r(·) be the expectation with the density Gn(v)
(norm), and EG,r{h(v)} can be

written as gBδ,r{h(v)}/gBδ,r(1). Let ψ(ν) = k−1
n β0{A(θ0)1/2Wobs + anεnν}, where kn = 1, if cε <

∞, and anεn, if cε = ∞.

LEMMA 5. Assume Condition 2–5 and 7. Then if εn = o(a
−1/2
n ),

(i) θ̃ε = θ0 + a−1
n β0A(θ0)

1/2Wobs + εnβ0EGn,r(ν) + r1, where r1 = oP (a
−1
n );

(ii) θ̃∗ε = θ0 + a−1
n β0A(θ0)

1/2wobs + εn(β0 − βε)EGn,r(ν) + r2, where r2 = oP (a
−1
n ).
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Proof. These results generalize Lemma 3(c) and Lemma 5(c) in Li & Fearnhead (2018a). With the

transformation t = t(θ), by Lemma 2, if εn = o(a
−1/2
n ),





θ̃ε = θ0 + a−1
n,εq̃Bδ,tν(t)/q̃Bδ,tν(1) = θ0 + a−1

n,εgBδ,r(t)/gBδ,r(1) + op(a
−1
n ),

θ̃xε = θ0 + a−1
n,εq̃Bδ,tν(t)/q̃Bδ,tν(1)− εnβεq̃Bδ,tν(ν)/q̃Bδ,tν(1)

= θ0 + a−1
n,εgBδ,r(t)/gBδ,r(1)− εnβεEan,r(ν) + op(a

−1
n ),

(A5)

where the remainder term comes from the fact that (a−1
n,ε + εn)

{
Op(a

−1
n,ε) +Op(a

2
nε

4
n)
}
= op(a

−1
n ).

First the leading term of gBδ,r(tν
k) is derived for k = 0 or 1. The case of k = 1 will be used later. Let

t′ = t− ψ(ν), then

gBδ,r(tν
k2 ) =

∫

Rd

∫

t(Bδ)

{t′ + ψ(ν)}νk2γn(t)gn(t, ν) dtdν

=

∫

Rd

ψ(ν)νk2Gn,r(ν) dν +

∫

Rd

∫

t(Bδ)

t′νk2γn(t)gn(t, ν) dtdν.

By matrix algebra, it is straightforward to show that gn(t, v) = N{t;ψ(v), k−2
n I(θ0)

−1}Gn(v). Then

with the transformation t′, we have

gBδ,r(tν
k2 )−

∫

Rd

ψ(ν)νk2Gn,r(ν) dν

=

∫

Rd

∫

t(Bδ)−ψ(ν)

t′νk2γn{ψ(ν) + t′}N
{
t′; 0, k−2

n I(θ0)
−1

}
Gn(ν) dt

′dν.

By applying the Taylor expansion on γn{ψ(ν) + t′}, the right hand side of the above equation is equal to
∫

Rd

∫

t(Bδ)−ψ(ν)

t′N{t′; 0, k−2
n I(θ0)

−1} dt′ · γn{ψ(ν)}νk2Gn(ν) dν

+

∫

Rd

∫

t(Bδ)−ψ(ν)

t′2Dtγn{ψ(ν) + et}N{t′; 0, k−2
n I(θ0)

−1} dt′ · νk2Gn(ν)dν

= k−1
n

∫

Rd

∫

Qv

t′′N{t′′; 0, I(θ0)−1} dt′′ · γn{ψ(ν)}νk2Gn(ν) dν

+k−2
n

∫

Rd

∫

Qv

t′′2Dtγn{ψ(ν) + et}N{t′′; 0, I(θ0)−1} dt′′ · νk2Gn(ν) dν, (A6)

where Qv = {an(θ − θ0)− knψ(ν) | θ ∈ Bδ} and t′′ = knt
′. Since Qv can be written as{

an(θ − θ0 − εnν)− β0A(θ0)
1/2Wobs | θ ∈ Bδ

}
, it converges to R

p for any fixed v with proba-

bility one. Then
∫
Qv
t′′N{t′′; 0, τ(θ0)−1} dt′′ = oP (1) for fixed v, and by the continuous mapping

theorem and Condition 3, the first term in the right hand side of (A6) is of the order op(k
−1
n ). The second

term is bounded by

k−2
n sup

t∈R

‖Dtγn(t)‖
∫

Rp

‖t′′‖2N{t′′; 0, I(θ−1
0 )} dt′′

∫

Rd

νk2Gn(ν) dν,

which is of the order Op(k
−2τn/an,ε) by Condition 5. Therefore

gBδ,r(tν
k2) =

∫

Rd

ψ(ν)νk2Gn(ν)dν + oP (k
−1
n ). (A7)

By algebra, kn = a−1
n,εan, and

∫

Rd

ψ(ν)νk2Gn(ν)dν

= an,εβ0{a−1
n A(θ0)

1/2Wobs

∫

Rd

νk2Gn,r(ν) dν + εn

∫

Rd

νk2+1Gn,r(ν) dν}. (A8)
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Then (i) and (ii) in the Lemma holds by plugging the expansion of gBδ,r(t) into (A5). �

LEMMA 6. Assume Condition 2, 3, 6–9. Then as n→ ∞,

(i) For any δ < δ0, rBc
δ
(1) and q̃Bc

δ
(1) are op(τ

p
n). More specifically, they are of the order

Op

(
τpne

−a
αδ
n,εcδ

)
for some positive constants cδ and αδ depending on δ.

(ii) qBδ
(1) = q̃Bδ

(1){1 +Op(α
−1
n )} and supA⊂Bδ

|qA(1)− q̃A(1)|/q̃Bδ
(1) = Op(α

−1
n );

(iii) if εn = o(a
−1/2
n ), then q̃Bδ

(1) and rBδ
(1) are ΘP (τ

p
na

d−p
n,ε ), and thus q̃P0(1) and qP0(1) are

ΘP (τ
p
na

d−p
n,ε );

(iv) if εn = o(a
−1/2
n ), θε = θ̃ε + op(a

−1
n,ε). If εn = o(a

−3/5
n ), θε = θ̃ε + oP (a

−1
n ).

Proof. This generalizes Lemma 7 in Li & Fearnhead (2018a). The arguments therein can be followed

exactly, by Condition 3 and the fact that regarding π(θ), only the condition supθ∈Rp π(θ) <∞ is used.�

LEMMA 7. Assume Condition 2, 3, 6–9.

(i) For any δ < δ0, Qε(θ ∈ Bcδ | sobs) and Q̃ε(θ ∈ Bcδ | sobs) are op(1);
(ii) There exists some δ < δ0 such that

sup
A∈Bp

|Qε(θ ∈ A ∩Bδ | sobs)− Q̃ε(θ ∈ A ∩Bδ | sobs)| = op(1);

(iii) an,ε(θε − θ̃ε) = op(1) .

Proof. This lemma generalizes Lemma 3 of Li & Fearnhead (2018a). The proof of Lemma 3 in

Li & Fearnhead (2018a) only needs Lemma 3 and 5 in Li & Fearnhead (2018b) to hold. The result

that qBc
δ
{h(θ)} = Op(τ

p
ne

−a
αδ
n,εcδ) for some positive constants αδ and cδ, which generalizes the case of

rn(θ) = π(θ) in Lemma 3 of Li & Fearnhead (2018b), holds by Condition 3, since for the latter, regard-

ing π(θ) it only uses the fact that supθ∈Bc
δ
π(θ) <∞. Then the arguments in the proof of Lemma 3 in

Li & Fearnhead (2018b) can be followed exactly, despite the term τpn that is not included in the order of

πBc
δ
{h(θ)}, sinceQε(θ ∈ A | sobs) is the ratio qA(1)/qRp(1). Since Lemma 5 in Li & Fearnhead (2018b)

has been generalized by Lemma (4), the arguments of the proof of Lemma 3 in Li & Fearnhead (2018a)

can be followed exactly. �

Proof of Theorem 2: This result generalizes the case (i) of Proposition 1 in Li & Fearnhead (2018a). With

the above lemmas, lines for proving case (i) of Proposition 1 in Li & Fearnhead (2018a) can be followed

exactly.

Proof of Theorem 3

LEMMA 8. Assume Condition 2–10. If εn = op(a
−3/5
n ), then anεn(βε − β0) = o(1).

Proof. This generalizes Lemma 4 in Li & Fearnhead (2018a) by replacing π(θ0 + a−1
n,εt) therein with

γn(t). By Condition 3 and the arguments in the proof of Lemma 4 in Li & Fearnhead (2018a), it can be

shown that

qRp{(θ − θ0)
k1(s− sobs)

k2}
qRp(1)

= a−k1n,ε ε
−k2
n

{
q̃Bδ,tv(t

k1νk2 )

q̃Bδ,tv(1)
+Op(α

−1
n )

}
.

Then by Lemma 2 (iii), the right hand side of the above is equal to

a−k1n,ε ε
−k2
n

{
gBδ,r(t

k1νk2)

gBδ,r(1)
+Op(a

−1
n,ε) +Op(a

2
nε

4
n) +Op(α

−1
n )

}
.
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Since βε = Covε(θ, Sn)Varε(Sn)
−1,

anεn(βε − β0) =kn

[
gBδ,r(tν)

gBδ,r(1)
− gBδ,r(t)gBδ,r(ν)

gBδ,r(1)
2

+ op(k
−1
n )

]
·

[
gBδ,r(νν

T )

gBδ,r(1)
− gBδ,r(ν)gBδ,r(ν)

T

gBδ,r(1)
2

+ op(k
−1
n )

]
− anεnβ0,

where the equations that a−1
n,εkn = o(1), a2nε

4
nkn = o(p), and α−1

n kn = o(a
−2/5
n kn) = o(1) are used. By

algebra, the right hand side of the equation above can be rewritten as
{
gBδ,r{(knt− anεnβ0ν)ν}

gBδ,r(1)
− gBδ,r(knt− anεnβ0ν)gBδ,r(ν)

gBδ,r(1)
2

+ op(1)

}
·

{
EG,r(νν

T )− EG,r(ν)EG,r(ν)
T + op(k

−1
n )

}−1
.

By plugging (A7) and (A8) in the above, anεn(βε − β0) is equal to
{
EG,r(ν)β0A(θ0)

1/2Wobs − EG,r(ν)β0A(θ0)
1/2Wobs + op(1)

}
· {VarG,r(ν) + op(k

−1
n )}−1

= oP (1){VarG,r(ν) + op(k
−1
n )}−1.

Since

VarG,r(ν) ≥
inft∈t(Bδ′ )

γn(t)

gBδ,r(1)

∫

Rd

∫

t(Bδ′ )

{ν − EG,r(ν)}2gn(t, ν) dtdν,

where δ′ is defined in the proof of Lemma 4(ii), we have VarG,r(ν)
−1 = Θp(1). Therefore anεn(βε −

β0) = op(1). �

LEMMA 9. Results generalizing Lemma 5 in Li & Fearnhead (2018a), i.e. replacing Πε and Π̃ε
therein with Qε and Q̃ε, hold.

Proof. In Li & Fearnhead (2018a), the proof of Lemma 5 requires Lemma 4 and 7 in Li & Fearnhead

(2018a) to hold. Since their generalized results have been proved, the proof of this lemma follows the

same arguments. �

LEMMA 10. Results generalizing Lemma 10 in Li & Fearnhead (2018a) hold.

Proof. The same arguments can be followed. �

Proof of Theorem 3: With all above lemmas, the proof holds by following the same arguments in the

proof of Theorem 1 in Li & Fearnhead (2018a).
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