34,974 research outputs found

    Distributed Trust Management in Grid Computing Environments

    Get PDF
    Grid computing environments are open distributed systems in which autonomous participants collaborate with each other using specific mechanisms and protocols. In general, the participants have different aims and objectives, can join and leave the Grid environment any time, have different capabilities for offering services, and often do not have sufficient knowledge about their collaboration partners. As a result, it is quite difficult to rely on the outcome of the collaboration process. Furthermore, the overall decision whether to rely at all on a collaboration partner or not may be affected by other non-functional aspects that cannot be generally determined for every possible situation, but should rather be under the control of the user when requesting such a decision. In this thesis, the idea that trust is the major requirement for enabling collaboration among partners in Grid environments is investigated. The probability for a successful future interaction among partners is considered as closely related to the mutual trust values the partners assign to each other. Thus, the level of trust represents the level of intention of Grid participants to collaborate. Trust is classified into two categories: identity trust and behavior trust. Identity trust is concerned with verifying the authenticity of an interaction partner, whereas behavior trust deals with the trustworthiness of an interaction partner. In order to calculate the identity trust, a "small-worlds"-like scheme is proposed. The overall behavior trust of an interaction partner is built up by considering several factors, such as accuracy or reliability. These factors of behavior trust are continuously tested and verified. In this way, a history of past collaborations that is used for future decisions on further collaborations between collaboration partners is collected. This kind of experience is also shared as recommendations to other participants. An interesting problem analysed is the difficulty of discovering the "real" behavior of an interaction partner from the "observed" behavior. If there are behavioral deviations, then it is not clear under what circumstances the deviating behavior of a partner is going to be tolerated. Issues involved in managing behavior trust of Grid participants are investigated and an approach based on the idea of using statistical methods of quality assurance for identifying the "real" behavior of a participant during an interaction and for "keeping" the behavior of the participants "in-control" is proposed. Another problem addressed is the security in Grid environments. Grids are designed to provide access and control over enormous remote computational resources, storage devices and scientific instruments. The information exchanged, saved or processed can be quite valuable and thus, a Grid is an attractive target for attacks to extract this information. Here, the confidentiality of the communication between Grid participants, together with issues related to authorization, integrity, management and non-repudiation are considered. A hybrid message level encryption scheme for securing the communication between Grid participants is proposed. It is based on a combination of two asymmetric cryptographic techniques, a variant of Public Key Infrastructure (PKI) and Certificateless Public Key Cryptography (CL-PKC). The different methods to trust management are implemented on a simulation infrastructure. The proposed system architecture can be configured to the domain specific trust requirements by the use of several separate trust profiles covering the entire lifecycle of trust establishment and management. Different experiments illustrate further how Grid participants can build, manage and evolve trust between them in order to have a successful collaboration. Although the approach is basically conceived for Grid environments, it is generic enough to be used for establishing and managing trust in many Grid-like distributed environments

    Security for Grid Services

    Full text link
    Grid computing is concerned with the sharing and coordinated use of diverse resources in distributed "virtual organizations." The dynamic and multi-institutional nature of these environments introduces challenging security issues that demand new technical approaches. In particular, one must deal with diverse local mechanisms, support dynamic creation of services, and enable dynamic creation of trust domains. We describe how these issues are addressed in two generations of the Globus Toolkit. First, we review the Globus Toolkit version 2 (GT2) approach; then, we describe new approaches developed to support the Globus Toolkit version 3 (GT3) implementation of the Open Grid Services Architecture, an initiative that is recasting Grid concepts within a service oriented framework based on Web services. GT3's security implementation uses Web services security mechanisms for credential exchange and other purposes, and introduces a tight least-privilege model that avoids the need for any privileged network service.Comment: 10 pages; 4 figure

    A Taxonomy of Workflow Management Systems for Grid Computing

    Full text link
    With the advent of Grid and application technologies, scientists and engineers are building more and more complex applications to manage and process large data sets, and execute scientific experiments on distributed resources. Such application scenarios require means for composing and executing complex workflows. Therefore, many efforts have been made towards the development of workflow management systems for Grid computing. In this paper, we propose a taxonomy that characterizes and classifies various approaches for building and executing workflows on Grids. We also survey several representative Grid workflow systems developed by various projects world-wide to demonstrate the comprehensiveness of the taxonomy. The taxonomy not only highlights the design and engineering similarities and differences of state-of-the-art in Grid workflow systems, but also identifies the areas that need further research.Comment: 29 pages, 15 figure

    Towards trusted volunteer grid environments

    Full text link
    Intensive experiences show and confirm that grid environments can be considered as the most promising way to solve several kinds of problems relating either to cooperative work especially where involved collaborators are dispersed geographically or to some very greedy applications which require enough power of computing or/and storage. Such environments can be classified into two categories; first, dedicated grids where the federated computers are solely devoted to a specific work through its end. Second, Volunteer grids where federated computers are not completely devoted to a specific work but instead they can be randomly and intermittently used, at the same time, for any other purpose or they can be connected or disconnected at will by their owners without any prior notification. Each category of grids includes surely several advantages and disadvantages; nevertheless, we think that volunteer grids are very promising and more convenient especially to build a general multipurpose distributed scalable environment. Unfortunately, the big challenge of such environments is, however, security and trust. Indeed, owing to the fact that every federated computer in such an environment can randomly be used at the same time by several users or can be disconnected suddenly, several security problems will automatically arise. In this paper, we propose a novel solution based on identity federation, agent technology and the dynamic enforcement of access control policies that lead to the design and implementation of trusted volunteer grid environments.Comment: 9 Pages, IJCNC Journal 201

    DCDIDP: A distributed, collaborative, and data-driven intrusion detection and prevention framework for cloud computing environments

    Get PDF
    With the growing popularity of cloud computing, the exploitation of possible vulnerabilities grows at the same pace; the distributed nature of the cloud makes it an attractive target for potential intruders. Despite security issues delaying its adoption, cloud computing has already become an unstoppable force; thus, security mechanisms to ensure its secure adoption are an immediate need. Here, we focus on intrusion detection and prevention systems (IDPSs) to defend against the intruders. In this paper, we propose a Distributed, Collaborative, and Data-driven Intrusion Detection and Prevention system (DCDIDP). Its goal is to make use of the resources in the cloud and provide a holistic IDPS for all cloud service providers which collaborate with other peers in a distributed manner at different architectural levels to respond to attacks. We present the DCDIDP framework, whose infrastructure level is composed of three logical layers: network, host, and global as well as platform and software levels. Then, we review its components and discuss some existing approaches to be used for the modules in our proposed framework. Furthermore, we discuss developing a comprehensive trust management framework to support the establishment and evolution of trust among different cloud service providers. Ā© 2011 ICST
    • ā€¦
    corecore