2,292 research outputs found

    A weighted distributed predictor-feedback control synthesis for interconnected time delay systems

    Full text link
    [EN] The paper investigates the control design of interconnected time delay systems by means of distributed predictor-feedback delay compensation approaches and event-triggered mechanism. The idea behind delay compensation is to counteract the negative effects of delays in the control-loop by feeding back future predictions of the system state. Nevertheless, an exact prediction of the overall system state vector cannot be obtained providing that each system has only knowledge of their local data regarding the system model and state variables. Consequently, predictor-feedback delay compensation may lose effectiveness if the coupling between subsystems is sufficiently strong. To circumvent this drawback, the proposed distributed predictor-feedback control incorporates extra degree of freedom for control synthesis by introducing new weighting factors for each local prediction term. The design of the weighting factors is addressed, together with the event-triggered parameters, by an algorithm based on Linear Matrix Inequalities (LMI) and the Cone Complementarity Linearization (CCL). Simulation results are provided to show the achieved improvements and validate the effectiveness of the proposed method, even in the case that other control strategies fail to stabilize the closed-loop system.This work was supported by projects PGC2018-098719-B-I00 (MCIU/AEI/FEDER, UE), Group DGA T45-17R and Fundacion Universitaria Antonio Gargallo (Project 2018/B004).González Sorribes, A. (2021). A weighted distributed predictor-feedback control synthesis for interconnected time delay systems. Information Sciences. 543(8):367-381. https://doi.org/10.1016/j.ins.2020.07.011S367381543

    Information flow and cooperative control of vehicle formations

    Get PDF
    We consider the problem of cooperation among a collection of vehicles performing a shared task using intervehicle communication to coordinate their actions. Tools from algebraic graph theory prove useful in modeling the communication network and relating its topology to formation stability. We prove a Nyquist criterion that uses the eigenvalues of the graph Laplacian matrix to determine the effect of the communication topology on formation stability. We also propose a method for decentralized information exchange between vehicles. This approach realizes a dynamical system that supplies each vehicle with a common reference to be used for cooperative motion. We prove a separation principle that decomposes formation stability into two components: Stability of this is achieved information flow for the given graph and stability of an individual vehicle for the given controller. The information flow can thus be rendered highly robust to changes in the graph, enabling tight formation control despite limitations in intervehicle communication capability

    Energy-Balance PBC of nonlinear dynamics under sampling and delays

    Get PDF
    The paper provides a new class of passivity-based controllers (PBCs) for stabilizing sampled-data input-delayed dynamics at a desired equilibrium via energy-balancing (EB) and reduction. Given a nonlinear dynamics under piecewise constant and retarded input, we first exhibit a new dynamics (the reduced dynamics) that is free of delays and equivalent to the original one. Accordingly, we design the digital controller assigning a suitable energetic behaviour to the reduced delay-free model with a stable target equilibrium. Then, it is proved that such a controller solves the EB-PBC problem on the original retarded system. The results are illustrated over a simple mechanical system

    Cloud Control of Connected Vehicle under Bi-directional Time-varying delay: An Application of Predictor-observer Structured Controller

    Full text link
    This article is devoted to addressing the cloud control of connected vehicles, specifically focusing on analyzing the effect of bi-directional communication-induced delays. To mitigate the adverse effects of such delays, a novel predictor-observer structured controller is proposed which compensate for both measurable output delays and unmeasurable, yet bounded, input delays simultaneously. The study begins by novelly constructing an equivalent delay-free inter-connected system model that incorporates the Predictor-Observer controller, considering certain delay boundaries and model uncertainties. Subsequently, a stability analysis is conducted to assess the system's robustness under these conditions. Next, the connected vehicle lateral control scenario is built which contain high-fidelity vehicle dynamic model. The results demonstrate the controller's ability to accurately predict the system states, even under time-varying bi-directional delays. Finally, the proposed method is deployed in a real connected vehicle lateral control system. Comparative tests with a conventional linear feedback controller showcase significantly improved control performance under dominant bi-directional delay conditions, affirming the superiority of the proposed method against the delay

    Delay-robust stabilization of an n + m hyperbolic PDE-ODE system

    Get PDF
    International audienceIn this paper, we study the problem of stabilizing a linear ordinary differential equation through a system of an n + m (hetero-directional) coupled hyperbolic equations in the actuating path. The method relies on the use of a backstepping transform to construct a first feedback to tackle in-domain couplings present in the PDE system and then on a predictive tracking controller used to stabilize the ODE. The proposed control law is robust with respect to small delays in the control signal

    Controlled synchronization in networks of diffusively coupled dynamical systems

    Get PDF

    Event-triggered predictor-based control with gain-Scheduling and extended state observer for networked control systems

    Get PDF
    This paper investigates the stabilization of Networked Control Systems (NCS) with mismatched disturbances through a novel Event-Triggered Control (ETC), composed of a predictor-feedback scheme and a gain-scheduled Extended State Observer (ESO). The key idea of the proposed control strategy is threefold: (i) to reduce resource usage in the NCS (bandwidth, energy) while maintaining a satisfactory control performance; (ii) to counteract the main negative effects of NCS: time-varying delays, packet dropouts, packet disorder, and (iii) to reject the steady-state error in the controlled output due to mismatched disturbances. Moreover, we address the co-design of the controller/observer gains, together with the event-triggered parameters, by means of Linear Matrix Inequalities (LMI) and Cone Complementarity Linearization (CCL) approaches. Finally, we illustrate the effectiveness of the proposed control synthesis by simulation and experimental results in a Unmanned Aerial Vehicle (UAV) based test-bed platform
    • …
    corecore