138 research outputs found

    Linear transceiver design in nonregenerative relays with channel state information

    Get PDF
    This paper deals with the design of nonregenerative relaying transceivers in cooperative systems where channel state information (CSI) is available at the relay station. The conventional nonregenerative approach is the amplify and forward (A&F) approach, where the signal received at the relay is simply amplified and retransmitted. In this paper, we propose an alternative linear transceiver design for nonregenerative relaying (including pure relaying and the cooperative transmission cases), making proper use of CSI at the relay station. Specifically, we design the optimum linear filtering performed on the data to be forwarded at the relay. As optimization criteria, we have considered the maximization of mutual information (that provides an information rate for which reliable communication is possible) for a given available transmission power at the relay station. Three different levels of CSI can be considered at the relay station: only first hop channel information (between the source and relay); first hop channel and second hop channel (between relay and destination) information, or a third situation where the relay may have complete cooperative channel information including all the links: first and second hop channels and also the direct channel between source and destination. Despite the latter being a more unrealistic situation, since it requires the destination to inform the relay station about the direct channel, it is useful as an upper benchmark. In this paper, we consider the last two cases relating to CSI.We compare the performance so obtained with the performance for the conventional A&F approach, and also with the performance of regenerative relays and direct noncooperative transmission for two particular cases: narrowband multiple-input multiple-output transceivers and wideband single input single output orthogonal frequency division multiplex transmissions.Peer Reviewe

    Robust MMSE Precoding Strategy for Multiuser MIMO Relay Systems with Switched Relaying and Side Information

    No full text
    In this work, we propose a minimum mean squared error (MMSE) robust base station (BS) precoding strategy based on switched relaying (SR) processing and limited transmission of side information for interference suppression in the downlink of multiuser multiple-input multiple-output (MIMO) relay systems. The BS and the MIMO relay station (RS) are both equipped with a codebook of interleaving matrices. For a given channel state information (CSI) the selection function at the BS chooses the optimum interleaving matrix from the codebook based on two optimization criteria to design the robust precoder. Prior to the payload transmission the BS sends the index corresponding to the selected interleaving matrix to the RS, where the best interleaving matrix is selected to build the optimum relay processing matrix. The entries of the codebook are randomly generated unitary matrices. Simulation results show that the performance of the proposed techniques is significantly better than prior art in the case of imperfect CSI.

    Hybrid Transceiver Optimization for Multi-Hop Communications

    Full text link
    Multi-hop communication with the aid of large-scale antenna arrays will play a vital role in future emergence communication systems. In this paper, we investigate amplify-and-forward based and multiple-input multiple-output assisted multi-hop communication, in which all nodes employ hybrid transceivers. Moreover, channel errors are taken into account in our hybrid transceiver design. Based on the matrix-monotonic optimization framework, the optimal structures of the robust hybrid transceivers are derived. By utilizing these optimal structures, the optimizations of analog transceivers and digital transceivers can be separated without loss of optimality. This fact greatly simplifies the joint optimization of analog and digital transceivers. Since the optimization of analog transceivers under unit-modulus constraints is non-convex, a projection type algorithm is proposed for analog transceiver optimization to overcome this difficulty. Based on the derived analog transceivers, the optimal digital transceivers can then be derived using matrix-monotonic optimization. Numeral results obtained demonstrate the performance advantages of the proposed hybrid transceiver designs over other existing solutions.Comment: 32 pages, 6 figures. This manuscript has been submitted to IEEE Journal on Selected Areas in Communications (special issue on Multiple Antenna Technologies for Beyond 5G

    Robust MMSE beamforming for multiantenna relay networks

    Get PDF
    In this paper, we propose a robust minimum mean square error (MMSE) based beamforming technique for multiantenna relay broadcast channels, where a multi-antenna base station transmits signal to single antenna users with the help of a multiantenna relay. The signal transmission from the base station to the single antenna users is completed in two time slots, where the relay receives the signal from the base station in the first time slot and it then forwards the received signal to different users based on amplify and forward protocol. We propose a robust beamforming technique for sum-power minimization problem with imperfect channel state information (CSI) between the relay and the users. This robust scheme is developed based on the worst-case optimization framework and Nemirovski Lemma by incorporating uncertainties in the CSI. The original optimization problem is divided into three subproblems due to joint non-convexity in terms of beamforming vectors at the base station, the relay amplification matrix, and receiver coefficients. These subproblems are formulated into a convex optimization framework by exploiting Nemirovski Lemma, and an iterative algorithm is developed by alternatively optimizing each of them with channel uncertainties. In addition, we provide an optimization framework to evaluate the achievable worst-case mean square error (MSE) of each user for a given set of design parameters. Simulation results have been provided to validate the convergence of the proposed algorithm

    Contributions to the Performance Analysis of Intervehicular Communications Systems and Schemes

    Get PDF
    RÉSUMÉ Le but des systĂšmes de communication intervĂ©hicule (Inter-Vehicle Communication – IVC) est d'amĂ©liorer la sĂ©curitĂ© de conduite en utilisant des capteurs et des techniques de communication sans fil pour ĂȘtre en mesure de communiquer mutuellement sans aucune intervention extĂ©rieure. Avec l'utilisation de ces systĂšmes, les communications vĂ©hicule Ă  vĂ©hicule (V2V) peuvent ĂȘtre plus efficaces dans la prĂ©vention des accidents et la dĂ©congestion de la circulation que si chaque vĂ©hicule travaillait individuellement. Une des solutions proposĂ©es pour les systĂšmes IVC est l’utilisation des systĂšmes de communication coopĂ©rative, qui en principe, augmentent l'efficacitĂ© spectrale et Ă©nergĂ©tique, la couverture du rĂ©seau, et rĂ©duit la probabilitĂ© de dĂ©faillance. La diversitĂ© d'antenne (entrĂ©es multiples sorties multiples « Multiple-Input Multiple-Output » ou MIMO) peut Ă©galement ĂȘtre une alternative pour les systĂšmes IVC pour amĂ©liorer la capacitĂ© du canal et la diversitĂ© (fiabilitĂ©), mais en Ă©change d’une complexitĂ© accrue. Toutefois, l'application de telles solutions est difficile, car les communications sans fil entre les vĂ©hicules sont soumises Ă  d’importants effets d'Ă©vanouissements des canaux appelĂ©s (canaux sujets aux Ă©vanouissements de n*Rayleigh, « n*Rayleigh fading channels»), ce qui conduit Ă  la dĂ©gradation des performances. Par consĂ©quent, dans cette thĂšse, nous proposons une analyse de la performance globale des systĂšmes de transmission coopĂ©ratifs et MIMO sur des canaux sujets aux Ă©vanouissements de n*Rayleigh. Cette analyse permettra d’aider les chercheurs pour la conception et la mise en Ɠuvre de systĂšmes de communication V2V avec une complexitĂ© moindre. En particulier, nous Ă©tudions d'abord la performance de la sĂ©lection du relais de coopĂ©ration avec les systĂšmes IVC, on suppose que la transmission via « Amplify-and-Forward» (AF) ou bien «Decode-and-Forward» (DF) est assurĂ©e par N relais pour transfĂ©rer le message de la source Ă  la destination. La performance du systĂšme est analysĂ©e en termes de probabilitĂ© de dĂ©faillance, la probabilitĂ© d'erreur de symbole, et la capacitĂ© moyenne du canal. Les rĂ©sultats numĂ©riques dĂ©montrent que la sĂ©lection de relais rĂ©alise une diversitĂ© de l'ordre de (d≈mN/n) pour les deux types de relais, oĂč m est un paramĂštre Ă©vanouissement de Rayleigh en cascade. Nous Ă©tudions ensuite la performance des systĂšmes IVC Ă  sauts multiples avec et sans relais rĂ©gĂ©nĂ©ratifs. Dans cette Ă©tude, nous dĂ©rivons des expressions approximatives pour la probabilitĂ© de dĂ©faillance et le niveau d’évanouissement lorsque la diversitĂ© en rĂ©ception basĂ©e sur le ratio maximum de combinaison (MRC) est employĂ©e. En outre, nous analysons la rĂ©partition de puissance pour le systĂšme sous-jacent afin de minimiser la probabilitĂ© globale de dĂ©faillance. Nous montrons que la performance des systĂšmes rĂ©gĂ©nĂ©ratifs est meilleure que celle des systĂšmes non rĂ©gĂ©nĂ©ratifs lorsque l’ordre de cascade n est faible, tandis qu’ils ont des performances similaires lorsque n est Ă©levĂ©. Ensuite, nous considĂ©rons le problĂšme de la dĂ©tection de puissance des signaux inconnus aux n* canaux de Rayleigh. Dans ce travail, de nouvelles expressions approximatives sont dĂ©rivĂ©es de la probabilitĂ© de dĂ©tection moyenne avec et sans diversitĂ© en rĂ©ception MRC. En outre, la performance du systĂšme est analysĂ©e lorsque la dĂ©tection de spectre coopĂ©rative (CSS) est considĂ©rĂ©e sous diverses contraintes de canaux (par exemple, les canaux de communication parfaits et imparfaits). Les rĂ©sultats numĂ©riques ont montrĂ© que la fiabilitĂ© de dĂ©tection diminue Ă  mesure que l'ordre n augmente et s’amĂ©liore sensiblement lorsque CSS emploie le schĂ©ma MRC. Il est dĂ©montrĂ© que CSS avec le schĂ©ma MRC maintient la probabilitĂ© de fausse alarme minimale dans les canaux d’information imparfaite plutĂŽt que d'augmenter le nombre d'utilisateurs en coopĂ©ration. Enfin, nous prĂ©sentons une nouvelle approche pour l'analyse des performances des systĂšmes IVC sur n*canaux de Rayleigh, en utilisant n_T antennes d'Ă©mission et n_R antennes de rĂ©ception pour lutter contre l'effet d’évanouissement. Dans ce contexte, nous Ă©valuons la performance des systĂšmes MIMO-V2V basĂ©s sur la sĂ©lection des antennes d'Ă©mission avec un ratio maximum de combinaison (TAS/MRC) et la sĂ©lection combinant (TAS/SC). Dans cette Ă©tude, nous dĂ©rivons des expressions analytiques plus prĂ©cises pour la probabilitĂ© de dĂ©faillance, la probabilitĂ© d'erreur de symbole, et l’évanouissement sur n*canaux Rayleigh. Il est montrĂ© que les deux rĂ©gimes ont le mĂȘme ordre de diversitĂ© maximale Ă©quivalent Ă  (d≈mn_T n_R /n) . En outre, TAS / MRC offre un gain de performance mieux que TAS/ SC lorsque le nombre d'antennes de rĂ©ception est plus que celle des antennes d’émission, mais l’amĂ©lioration de la performance est limitĂ©e lorsque n augmente.----------Abstract The purpose of intervehicular communication (IVC) systems is to enhance driving safety, in which vehicles use sensors and wireless communication techniques to talk to each other without any roadside intervention. Using these systems, vehicle-to-vehicle (V2V) communications can be more effective in avoiding accidents and traffic congestion than if each vehicle works individually. A potential solution can be implemented in this research area using cooperative communications systems which, in principle, increase spectral and power efficiency, network coverage, and reduce the outage probability. Antenna diversity (i.e., multiple-input multiple output (MIMO) systems) can also be an alternative solution for IVC systems to enhance channel capacity and diversity (reliability) but in exchange of an increased complexity. However, applying such solutions is challenging since wireless communications among vehicles is subject to harsh fading channels called ‘n*Rayleigh fading channels’, which leads to performance degradation. Therefore, in this thesis we provide a comprehensive performance analysis of cooperative transmission and MIMO systems over n*Rayleigh fading channels that help researchers for the design and implementation of V2V communication systems with lower complexity. Specifically, we first investigate the performance of cooperative IVC systems with relay selection over n*Rayleigh fading channels, assuming that both the decode-and-forward and the amplify-and-forward relaying protocols are achieved by N relays to transfer the source message to the destination. System performance is analyzed in terms of outage probability, symbol error probability, and average channel capacity. The numerical results have shown that the best relay selection approach achieves the diversity order of (d≈mN/n) where m is a cascaded Rayleigh fading parameter. Second, we investigate the performance of multihop-IVC systems with regenerative and non-regenerative relays. In this study, we derive approximate closed-form expressions for the outage probability and amount of fading when the maximum ratio combining (MRC) diversity reception is employed. Further, we analyze the power allocation for the underlying scheme in order to minimize the overall outage probability. We show that the performance of regenerative systems is better than that of non-regenerative systems when the cascading order n is low and they have similar performance when n is high. Third, we consider the problem of energy detection of unknown signals over n*Rayleigh fading channels. In this work, novel approximate expressions are derived for the average probability of detection with and without MRC diversity reception. Moreover, the system performance is analyzed when cooperative spectrum sensing (CSS) is considered under various channel constraints (e.g, perfect and imperfect reporting channels). The numerical results show that the detection reliability decreases as the cascading order n increases and substantially improves when CSS employs MRC schemes. It is demonstrated that CSS with MRC scheme keeps the probability of false alarm minimal under imperfect reporting channels rather than increasing the number of cooperative users. Finally, we present a new approach for the performance analysis of IVC systems over n*Rayleigh fading channels, using n_T transmit and n_R receive antennas to combat fading influence. In this context, we evaluate the performance of MIMO-V2V systems based on the transmit antenna selection with maximum ratio combining (TAS/MRC) and selection combining (TAS/SC) schemes. In this study, we derive tight analytical expressions for the outage probability, the symbol error probability, and the amount of fading over n*Rayleigh fading channels. It is shown that both schemes have the same maximum diversity order equivalent to (d≈mn_T n_R /n). In addition, TAS/MRC offers a better performance gain than TAS/SC scheme when the number of receive antennas is more than that of transmit antennas, but the performance improvement is limited as n increases
    • 

    corecore