4,146 research outputs found

    Human-in-the-Loop Model Predictive Control of an Irrigation Canal

    Get PDF
    Until now, advanced model-based control techniques have been predominantly employed to control problems that are relatively straightforward to model. Many systems with complex dynamics or containing sophisticated sensing and actuation elements can be controlled if the corresponding mathematical models are available, even if there is uncertainty in this information. Consequently, the application of model-based control strategies has flourished in numerous areas, including industrial applications [1]-[3].Junta de Andalucía P11-TEP-812

    Decentralized fault-tolerant control of inland navigation networks: a challenge

    Get PDF
    Inland waterways are large-scale networks used principally for navigation. Even if the transport planning is an important issue, the water resource management is a crucial point. Indeed, navigation is not possible when there is too little or too much water inside the waterways. Hence, the water resource management of waterways has to be particularly efficient in a context of climate change and increase of water demand. This management has to be done by considering different time and space scales and still requires the development of new methodologies and tools in the topics of the Control and Informatics communities. This work addresses the problem of waterways management in terms of modeling, control, diagnosis and fault-tolerant control by focusing in the inland waterways of the north of France. A review of proposed tools and the ongoing research topics are provided in this paper.Peer ReviewedPostprint (published version

    New offset-free method for model predictive control of open channels

    Get PDF
    Irrigation or drainage canals can be controlled by model predictive control (MPC). Applying MPC with an internal model in the presence of unknown disturbances in some cases can lead to steady state offset. Therefore an additional component should be implemented along with the MPC. A new method eliminating the offset has been developed in this paper for MPC. It is based on combining two basic approaches of MPC. It has been implemented to control water levels in the three-pool UPC laboratory canal and further numerically tested using a test case benchmark proposed by the American Society of Civil Engineers (ASCE). It has been found that the developed offset-free method is able to eliminate the steady-state offset, while taking into account known and unknown disturbances.Peer ReviewedPostprint (author's final draft

    A distributed accelerated gradient algorithm for distributed model predictive control of a hydro power valley

    Full text link
    A distributed model predictive control (DMPC) approach based on distributed optimization is applied to the power reference tracking problem of a hydro power valley (HPV) system. The applied optimization algorithm is based on accelerated gradient methods and achieves a convergence rate of O(1/k^2), where k is the iteration number. Major challenges in the control of the HPV include a nonlinear and large-scale model, nonsmoothness in the power-production functions, and a globally coupled cost function that prevents distributed schemes to be applied directly. We propose a linearization and approximation approach that accommodates the proposed the DMPC framework and provides very similar performance compared to a centralized solution in simulations. The provided numerical studies also suggest that for the sparsely interconnected system at hand, the distributed algorithm we propose is faster than a centralized state-of-the-art solver such as CPLEX

    SCADA system with predictive controller applied to irrigation canals

    Get PDF
    This paper applies a model predictive controller (MPC) to an automatic water canal with sensors and actuators controlled by a network (programmable logic controller), and supervised by a SCADA system (supervisory control and a data acquisition). This canal is composed by a set of distributed sub-systems that control the water level in each canal pool, constrained by discharge gates (control variables) and water off-takes (disturbances). All local controllers are available through an industrial network managed by the SCADA system, where the centralized predictive controller runs. In the paper, a complete new platform connecting the SCADA supervisory system and the MATLAB software (named SCADA-MATLAB platform) is built, in order to provide the usual SCADA systems with the ability to handle complex control algorithms. The developed MPC-model presents a novelty in the control of irrigation canals as it allows the use of industrial PLCs to implement high complex controllers, through the new developed SCADA-MATLAB platform. Experimental results demonstrate the reliability and effectiveness of the propped strategy in real-life situations, including gate malfunctioning and extreme water off-take conditions

    Optimal predictive control of water transport systems: Arrêt-Darré/Arros case study

    Get PDF
    This paper proposes the use of predictive optimal control as a suitable methodology to manage efficiently transport water networks. The predictive optimal controller is implemented using MPC control techniques. The Arrêt-Darré/Arros dam-river system located in the Southwest region of France is proposed as case study. A high-fidelity dynamic simulator based on the full Saint-Venant equations and able to reproduce this system is developed in MATLAB/SIMULINK to validate the performance of the developed predictive optimal control system. The control objective in the Arrêt-Darré/Arros dam-river system is to guarantee an ecological flow rate at a control point downstream of the Arrêt-Darré dam by controlling the outflow of this dam in spite of the unmeasured disturbances introduced by rainfalls incomings and farmer withdrawals

    Distributed LQG control of a water delivery canal with feedforward from measured consumptions

    Get PDF
    This work addresses the design of distributed LQG controllers for water delivery canals that include feedforward from local farmer water consumptions. The proposed architecture consists of a network of local control agents, each connected to one of the canal pools and sharing information with their neighbors in order to act in a coordinated way. In order to improve performance, the measurement of the outflows from each pool is used as a feedforward signal. Although the feedforward action is local. It propagates due to the coordinates procedure. The paper presents the distributed LQG algorithm with feedforward and experimental results in a large scale pilot water delivery canal

    Model-based sensor supervision inland navigation networks: Cuinchy-Fontinettes case study

    Get PDF
    In recent years, inland navigation networks benefit from the innovation of the instrumentation and SCADA systems. These data acquisition and control systems lead to the improvement of the manage- ment of these networks. Moreover, they allow the implementation of more accurate automatic control to guarantee the navigation requirements. However, sensors and actuators are subject to faults due to the strong effects of the environment, aging, etc. Thus, before implementing automatic control strate- gies that rely on the fault-free mode, it is necessary to design a fault diagnosis scheme. This fault diagnosis scheme has to detect and isolate possible faults in the system to guarantee fault-free data and the efficiency of the automatic control algorithms. Moreover, the proposed supervision scheme could predict future incipient faults that are necessary to perform predictive maintenance of the equipment. In this paper, a general architecture of sensor fault detection and isolation using model-based approaches will be proposed for inland navigation networks. The proposed approach will be particularized for the Cuinchy-Fontinettes reach located in the north of France. The preliminary results show the effectiveness of the proposed fault diagnosis methodologies using a realistic simulator and fault scenarios.In recent years, inland navigation networks bene¿t from the innovation of the instrumentation and SCADA systems. These data acquisition and control systems lead to the improvement of the management of these networks. Moreover, they allow the implementation of more accurate automatic control to guarantee the navigation requirements. However, sensors and actuators are subject to faults due to the strong effects of the environment, aging, etc. Thus, before implementing automatic control strategies that rely on the fault-free mode, it is necessary to design a fault diagnosis scheme. This fault diagnosis scheme has to detect and isolate possible faults in the system to guarantee fault-free data and the efficiency of the automatic control algorithms. Moreover, the proposed supervision scheme could predict future incipient faults that are necessary to perform predictive maintenance of the equipment. In this paper, a general architecture of sensor fault detection and isolation using model-based approaches will be proposed for inland navigation networks. The proposed approach will be particularized for the Cuinchy-Fontinettes reach located in the north of France. The preliminary results show the effectiveness of the proposed fault diagnosis methodologies using a realistic simulator and fault scenarios.Peer ReviewedPostprint (author's final draft

    Pro-poor intervention strategies in irrigated agriculture in Asia: poverty in irrigated agriculture: issues and options: Vietnam

    Get PDF
    Irrigated farming / Poverty / Farm income / Irrigation management / Institutions / Legal aspects / Water rates / User charges / Participatory management / Privatization / Participatory rural appraisal / Performance indexes / Irrigation programs / Irrigation systems / Pumping / Irrigation canals / Social aspects / Economic aspects / Rivers / Hydrology / Dams / Households / Income / Regression analysis / Drainage / Cooperatives / Water delivery / Water distribution / Rice / Financing / Drought / Vietnam / Red River Delta / Nam Duong Irrigation System / Nam Thach Han Irrigation System / Han River
    corecore