7,055 research outputs found

    CMOS Architectures and circuits for high-speed decision-making from image flows

    Get PDF
    We present architectures, CMOS circuits and CMOS chips to process image flows at very high speed. This is achieved by exploiting bio-inspiration and performing processing tasks in parallel manner and concurrently with image acquisition. A vision system is presented which makes decisions within sub-msec range. This is very well suited for defense and security applications requiring segmentation and tracking of rapidly moving objects

    CMOS Vision Sensors: Embedding Computer Vision at Imaging Front-Ends

    Get PDF
    CMOS Image Sensors (CIS) are key for imaging technol-ogies. These chips are conceived for capturing opticalscenes focused on their surface, and for delivering elec-trical images, commonly in digital format. CISs may incor-porate intelligence; however, their smartness basicallyconcerns calibration, error correction and other similartasks. The term CVISs (CMOS VIsion Sensors) definesother class of sensor front-ends which are aimed at per-forming vision tasks right at the focal plane. They havebeen running under names such as computational imagesensors, vision sensors and silicon retinas, among others. CVIS and CISs are similar regarding physical imple-mentation. However, while inputs of both CIS and CVISare images captured by photo-sensors placed at thefocal-plane, CVISs primary outputs may not be imagesbut either image features or even decisions based on thespatial-temporal analysis of the scenes. We may hencestate that CVISs are more “intelligent” than CISs as theyfocus on information instead of on raw data. Actually,CVIS architectures capable of extracting and interpretingthe information contained in images, and prompting reac-tion commands thereof, have been explored for years inacademia, and industrial applications are recently ramp-ing up.One of the challenges of CVISs architects is incorporat-ing computer vision concepts into the design flow. Theendeavor is ambitious because imaging and computervision communities are rather disjoint groups talking dif-ferent languages. The Cellular Nonlinear Network Univer-sal Machine (CNNUM) paradigm, proposed by Profs.Chua and Roska, defined an adequate framework forsuch conciliation as it is particularly well suited for hard-ware-software co-design [1]-[4]. This paper overviewsCVISs chips that were conceived and prototyped at IMSEVision Lab over the past twenty years. Some of them fitthe CNNUM paradigm while others are tangential to it. Allthem employ per-pixel mixed-signal processing circuitryto achieve sensor-processing concurrency in the quest offast operation with reduced energy budget.Junta de Andalucía TIC 2012-2338Ministerio de Economía y Competitividad TEC 2015-66878-C3-1-R y TEC 2015-66878-C3-3-

    Form Factor Improvement of Smart-Pixels for Vision Sensors through 3-D Vertically- Integrated Technologies

    Get PDF
    While conventional CMOS active pixel sensors embed only the circuitry required for photo-detection, pixel addressing and voltage buffering, smart pixels incorporate also circuitry for data processing, data storage and control of data interchange. This additional circuitry enables data processing be realized concurrently with the acquisition of images which is instrumental to reduce the number of data needed to carry to information contained into images. This way, more efficient vision systems can be built at the cost of larger pixel pitch. Vertically-integrated 3D technologies enable to keep the advnatges of smart pixels while improving the form factor of smart pixels.Office of Naval Research N000141110312Ministerio de Ciencia e Innovación IPT-2011-1625-43000

    A versatile sensor interface for programmable vision systems-on-chip

    Get PDF
    This paper describes an optical sensor interface designed for a programmable mixed-signal vision chip. This chip has been designed and manufactured in a standard 0.35μm n-well CMOS technology with one poly layer and five metal layers. It contains a digital shell for control and data interchange, and a central array of 128 × 128 identical cells, each cell corresponding to a pixel. Die size is 11.885 × 12.230mm2 and cell size is 75.7μm × 73.3μm. Each cell contains 198 transistors dedicated to functions like processing, storage, and sensing. The system is oriented to real-time, single-chip image acquisition and processing. Since each pixel performs the basic functions of sensing, processing and storage, data transferences are fully parallel (image-wide). The programmability of the processing functions enables the realization of complex image processing functions based on the sequential application of simpler operations. This paper provides a general overview of the system architecture and functionality, with special emphasis on the optical interface.European Commission IST-1999-19007Office of Naval Research (USA) N00014021088

    CMOS-3D smart imager architectures for feature detection

    Get PDF
    This paper reports a multi-layered smart image sensor architecture for feature extraction based on detection of interest points. The architecture is conceived for 3-D integrated circuit technologies consisting of two layers (tiers) plus memory. The top tier includes sensing and processing circuitry aimed to perform Gaussian filtering and generate Gaussian pyramids in fully concurrent way. The circuitry in this tier operates in mixed-signal domain. It embeds in-pixel correlated double sampling, a switched-capacitor network for Gaussian pyramid generation, analog memories and a comparator for in-pixel analog-to-digital conversion. This tier can be further split into two for improved resolution; one containing the sensors and another containing a capacitor per sensor plus the mixed-signal processing circuitry. Regarding the bottom tier, it embeds digital circuitry entitled for the calculation of Harris, Hessian, and difference-of-Gaussian detectors. The overall system can hence be configured by the user to detect interest points by using the algorithm out of these three better suited to practical applications. The paper describes the different kind of algorithms featured and the circuitry employed at top and bottom tiers. The Gaussian pyramid is implemented with a switched-capacitor network in less than 50 μs, outperforming more conventional solutions.Xunta de Galicia 10PXIB206037PRMinisterio de Ciencia e Innovación TEC2009-12686, IPT-2011-1625-430000Office of Naval Research N00014111031

    A sub-mW IoT-endnode for always-on visual monitoring and smart triggering

    Full text link
    This work presents a fully-programmable Internet of Things (IoT) visual sensing node that targets sub-mW power consumption in always-on monitoring scenarios. The system features a spatial-contrast 128x64128\mathrm{x}64 binary pixel imager with focal-plane processing. The sensor, when working at its lowest power mode (10μW10\mu W at 10 fps), provides as output the number of changed pixels. Based on this information, a dedicated camera interface, implemented on a low-power FPGA, wakes up an ultra-low-power parallel processing unit to extract context-aware visual information. We evaluate the smart sensor on three always-on visual triggering application scenarios. Triggering accuracy comparable to RGB image sensors is achieved at nominal lighting conditions, while consuming an average power between 193μW193\mu W and 277μW277\mu W, depending on context activity. The digital sub-system is extremely flexible, thanks to a fully-programmable digital signal processing engine, but still achieves 19x lower power consumption compared to MCU-based cameras with significantly lower on-board computing capabilities.Comment: 11 pages, 9 figures, submitteted to IEEE IoT Journa

    In the quest of vision-sensors-on-chip: Pre-processing sensors for data reduction

    Get PDF
    This paper shows that the implementation of vision systems benefits from the usage of sensing front-end chips with embedded pre-processing capabilities - called CVIS. Such embedded pre-processors reduce the number of data to be delivered for ulterior processing. This strategy, which is also adopted by natural vision systems, relaxes system-level requirements regarding data storage and communications and enables highly compact and fast vision systems. The paper includes several proof-o-concept CVIS chips with embedded pre-processing and illustrate their potential advantages. © 2017, Society for Imaging Science and Technology.Office of Naval Research (USA) N00014-14-1-0355Ministerio de Economía y Competitiviad TEC2015-66878-C3-1-R, TEC2015-66878-C3-3-RJunta de Andalucía 2012 TIC 233

    A mixed-signal early vision chip with embedded image and programming memories and digital I/O

    Get PDF
    From a system level perspective, this paper presents a 128 × 128 flexible and reconfigurable Focal-Plane Analog Programmable Array Processor, which has been designed as a single chip in a 0.35μm standard digital 1P-5M CMOS technology. The core processing array has been designed to achieve high-speed of operation and large-enough accuracy (∼ 7bit) with low power consumption. The chip includes on-chip program memory to allow for the execution of complex, sequential and/or bifurcation flow image processing algorithms. It also includes the structures and circuits needed to guarantee its embedding into conventional digital hosting systems: external data interchange and control are completely digital. The chip contains close to four million transistors, 90% of them working in analog mode. The chip features up to 330GOPs (Giga Operations per second), and uses the power supply (180GOP/Joule) and the silicon area (3.8 GOPS/mm2) efficiently, as it is able to maintain VGA processing throughputs of 100Frames/s with about 15 basic image processing tasks on each frame

    ACE16K: The Third Generation of Mixed-Signal SIMD-CNN ACE Chips Toward VSoCs

    Get PDF
    Today, with 0.18-μm technologies mature and stable enough for mixed-signal design with a large variety of CMOS compatible optical sensors available and with 0.09-μm technologies knocking at the door of designers, we can face the design of integrated systems, instead of just integrated circuits. In fact, significant progress has been made in the last few years toward the realization of vision systems on chips (VSoCs). Such VSoCs are eventually targeted to integrate within a semiconductor substrate the functions of optical sensing, image processing in space and time, high-level processing, and the control of actuators. The consecutive generations of ACE chips define a roadmap toward flexible VSoCs. These chips consist of arrays of mixed-signal processing elements (PEs) which operate in accordance with single instruction multiple data (SIMD) computing architectures and exhibit the functional features of CNN Universal Machines. They have been conceived to cover the early stages of the visual processing path in a fully-parallel manner, and hence more efficiently than DSP-based systems. Across the different generations, different improvements and modifications have been made looking to converge with the newest discoveries of neurobiologists regarding the behavior of natural retinas. This paper presents considerations pertaining to the design of a member of the third generation of ACE chips, namely to the so-called ACE16k chip. This chip, designed in a 0.35-μm standard CMOS technology, contains about 3.75 million transistors and exhibits peak computing figures of 330 GOPS, 3.6 GOPS/mm2 and 82.5 GOPS/W. Each PE in the array contains a reconfigurable computing kernel capable of calculating linear convolutions on 3×3 neighborhoods in less than 1.5 μs, imagewise Boolean combinations in less than 200 ns, imagewise arithmetic operations in about 5 μs, and CNN-like temporal evolutions with a time constant of about 0.5 μs. Unfortunately, the many ideas underlying the design of this chip cannot be covered in a single paper; hence, this paper is focused on, first, placing the ACE16k in the ACE chip roadmap and, then, discussing the most significant modifications of ACE16K versus its predecessors in the family.LOCUST IST2001—38 097VISTA TIC2003—09 817 - C02—01Office of Naval Research N000 140 210 88
    corecore