15,554 research outputs found

    Computation Over Gaussian Networks With Orthogonal Components

    Get PDF
    Function computation of arbitrarily correlated discrete sources over Gaussian networks with orthogonal components is studied. Two classes of functions are considered: the arithmetic sum function and the type function. The arithmetic sum function in this paper is defined as a set of multiple weighted arithmetic sums, which includes averaging of the sources and estimating each of the sources as special cases. The type or frequency histogram function counts the number of occurrences of each argument, which yields many important statistics such as mean, variance, maximum, minimum, median, and so on. The proposed computation coding first abstracts Gaussian networks into the corresponding modulo sum multiple-access channels via nested lattice codes and linear network coding and then computes the desired function by using linear Slepian-Wolf source coding. For orthogonal Gaussian networks (with no broadcast and multiple-access components), the computation capacity is characterized for a class of networks. For Gaussian networks with multiple-access components (but no broadcast), an approximate computation capacity is characterized for a class of networks.Comment: 30 pages, 12 figures, submitted to IEEE Transactions on Information Theor

    Lossless and near-lossless source coding for multiple access networks

    Get PDF
    A multiple access source code (MASC) is a source code designed for the following network configuration: a pair of correlated information sequences {X-i}(i=1)(infinity), and {Y-i}(i=1)(infinity) is drawn independent and identically distributed (i.i.d.) according to joint probability mass function (p.m.f.) p(x, y); the encoder for each source operates without knowledge of the other source; the decoder jointly decodes the encoded bit streams from both sources. The work of Slepian and Wolf describes all rates achievable by MASCs of infinite coding dimension (n --> infinity) and asymptotically negligible error probabilities (P-e((n)) --> 0). In this paper, we consider the properties of optimal instantaneous MASCs with finite coding dimension (n 0) performance. The interest in near-lossless codes is inspired by the discontinuity in the limiting rate region at P-e((n)) = 0 and the resulting performance benefits achievable by using near-lossless MASCs as entropy codes within lossy MASCs. Our central results include generalizations of Huffman and arithmetic codes to the MASC framework for arbitrary p(x, y), n, and P-e((n)) and polynomial-time design algorithms that approximate these optimal solutions

    Source Coding with Fixed Lag Side Information

    Full text link
    We consider source coding with fixed lag side information at the decoder. We focus on the special case of perfect side information with unit lag corresponding to source coding with feedforward (the dual of channel coding with feedback) introduced by Pradhan. We use this duality to develop a linear complexity algorithm which achieves the rate-distortion bound for any memoryless finite alphabet source and distortion measure.Comment: 10 pages, 3 figure

    Joint Wyner-Ziv/Dirty Paper coding by modulo-lattice modulation

    Full text link
    The combination of source coding with decoder side-information (Wyner-Ziv problem) and channel coding with encoder side-information (Gel'fand-Pinsker problem) can be optimally solved using the separation principle. In this work we show an alternative scheme for the quadratic-Gaussian case, which merges source and channel coding. This scheme achieves the optimal performance by a applying modulo-lattice modulation to the analog source. Thus it saves the complexity of quantization and channel decoding, and remains with the task of "shaping" only. Furthermore, for high signal-to-noise ratio (SNR), the scheme approaches the optimal performance using an SNR-independent encoder, thus it is robust to unknown SNR at the encoder.Comment: Submitted to IEEE Transactions on Information Theory. Presented in part in ISIT-2006, Seattle. New version after revie
    • …
    corecore