45 research outputs found

    A Survey on Multi-AP Coordination Approaches over Emerging WLANs: Future Directions and Open Challenges

    Full text link
    Recent advancements in wireless local area network (WLAN) technology include IEEE 802.11be and 802.11ay, often known as Wi-Fi 7 and WiGig, respectively. The goal of these developments is to provide Extremely High Throughput (EHT) and low latency to meet the demands of future applications like as 8K videos, augmented and virtual reality, the Internet of Things, telesurgery, and other developing technologies. IEEE 802.11be includes new features such as 320 MHz bandwidth, multi-link operation, Multi-user Multi-Input Multi-Output, orthogonal frequency-division multiple access, and Multiple-Access Point (multi-AP) coordination (MAP-Co) to achieve EHT. With the increase in the number of overlapping APs and inter-AP interference, researchers have focused on studying MAP-Co approaches for coordinated transmission in IEEE 802.11be, making MAP-Co a key feature of future WLANs. Moreover, similar issues may arise in EHF bands WLAN, particularly for standards beyond IEEE 802.11ay. This has prompted researchers to investigate the implementation of MAP-Co over future 802.11ay WLANs. Thus, in this article, we provide a comprehensive review of the state-of-the-art MAP-Co features and their shortcomings concerning emerging WLAN. Finally, we discuss several novel future directions and open challenges for MAP-Co.Comment: The reason for the replacement of the previous version of the paper is due to a change in the author's list. As a result, a new version has been created, which serves as the final draft version before acceptance. This updated version contains all the latest changes and improvements made to the pape

    AirSync: Enabling Distributed Multiuser MIMO with Full Spatial Multiplexing

    Full text link
    The enormous success of advanced wireless devices is pushing the demand for higher wireless data rates. Denser spectrum reuse through the deployment of more access points per square mile has the potential to successfully meet the increasing demand for more bandwidth. In theory, the best approach to density increase is via distributed multiuser MIMO, where several access points are connected to a central server and operate as a large distributed multi-antenna access point, ensuring that all transmitted signal power serves the purpose of data transmission, rather than creating "interference." In practice, while enterprise networks offer a natural setup in which distributed MIMO might be possible, there are serious implementation difficulties, the primary one being the need to eliminate phase and timing offsets between the jointly coordinated access points. In this paper we propose AirSync, a novel scheme which provides not only time but also phase synchronization, thus enabling distributed MIMO with full spatial multiplexing gains. AirSync locks the phase of all access points using a common reference broadcasted over the air in conjunction with a Kalman filter which closely tracks the phase drift. We have implemented AirSync as a digital circuit in the FPGA of the WARP radio platform. Our experimental testbed, comprised of two access points and two clients, shows that AirSync is able to achieve phase synchronization within a few degrees, and allows the system to nearly achieve the theoretical optimal multiplexing gain. We also discuss MAC and higher layer aspects of a practical deployment. To the best of our knowledge, AirSync offers the first ever realization of the full multiuser MIMO gain, namely the ability to increase the number of wireless clients linearly with the number of jointly coordinated access points, without reducing the per client rate.Comment: Submitted to Transactions on Networkin

    QoS-based Joint User Selection and Scheduling for MU-MIMO WLANs, Journal of Telecommunications and Information Technology, 2017, nr 4

    Get PDF
    The shift in Multi-User Multiple Input Multiple Output (MU-MIMO) has gained attention due to its wide support in very high throughput Wireless Local Area Networks (WLANs) such as the 802.11ac. However, the full advantage of MU-MIMO can be utilized only with proper user selection and scheduling. Also, providing Quality of Service (QoS) support is a major challenge for these wireless networks. Generally, user scheduling is done with the acquisition of Channel State Information (CSI) from all the users. In MU-MIMO based WLANs, the number of CSI request increases with the number of users. This results in an increased CSI overhead and in degradation of the overall throughput. Most of the proposals in the literature have not addressed the contention in the CSI feedback clearly. Hence, in this paper a Joint User Selection and Scheduling (JUSS) scheme is discussed and its performance is evaluated in terms of throughput, delay, packet loss and fairness. In the performance comparison some wellknown Medium Access Control (MAC) protocols are considered. The proposed scheme not only enhances throughput, but also avoids contention during CSI feedback period

    MAC/PHY Co-Design of CSMA Wireless Networks Using Software Radios.

    Full text link
    In the past decade, CSMA-based protocols have spawned numerous network standards (e.g., the WiFi family), and played a key role in improving the ubiquity of wireless networks. However, the rapid evolution of CSMA brings unprecedented challenges, especially the coexistence of different network architectures and communications devices. Meanwhile, many intrinsic limitations of CSMA have been the main obstacle to the performance of its derivatives, such as ZigBee, WiFi, and mesh networks. Most of these problems are observed to root in the abstract interface of the CSMA MAC and PHY layers --- the MAC simply abstracts the advancement of PHY technologies as a change of data rate. Hence, the benefits of new PHY technologies are either not fully exploited, or they even may harm the performance of existing network protocols due to poor interoperability. In this dissertation, we show that a joint design of the MAC/PHY layers can achieve a substantially higher level of capacity, interoperability and energy efficiency than the weakly coupled MAC/PHY design in the current CSMA wireless networks. In the proposed MAC/PHY co-design, the PHY layer exposes more states and capabilities to the MAC, and the MAC performs intelligent adaptation to and control over the PHY layer. We leverage the reconfigurability of software radios to design smart signal processing algorithms that meet the challenge of making PHY capabilities usable by the MAC layer. With the approach of MAC/PHY co-design, we have revisited the primitive operations of CSMA (collision avoidance, carrier signaling, carrier sensing, spectrum access and transmitter cooperation), and overcome its limitations in relay and broadcast applications, coexistence of heterogeneous networks, energy efficiency, coexistence of different spectrum widths, and scalability for MIMO networks. We have validated the feasibility and performance of our design using extensive analysis, simulation and testbed implementation.PHDComputer Science & EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/95944/1/xyzhang_1.pd

    Enhancing wireless local area networks by leveraging diverse frequency resources

    Get PDF
    In this thesis, signal propagation variations that are experience over the frequency resources of IEEE 802.11 Wireless Local Area Networks (WLANs) are studied. It is found that exploitation of these variations can improve several aspects of wireless communication systems. To this aim, frequency varying behavior is addressed at two different levels. First, the intra-channel scale is considered, i.e. variations over the continuous frequency block that a device uses for a cohesive transmission. Variations at this level are well known but current wireless systems restrict to basic equalization techniques to balance the received signal. In contrast, this work shows that more fine grained adaptation to these differences can accomplish throughput and connection range gains. Second, multi-frequency band enabled devices that access widely differing frequency resources in the millimeter wave range as well as in the microwave range are analyzed. These devices that are expected to follow the IEEE 802.11ad specification experience intense propagation variations over their frequency resources. Thus, a part of this thesis revises, the theoretical specification of the IEEE 802.11ad standard and complements it by a measurement study of first generation millimeter wave devices. This study reveals deficiencies of first generation millimeter wave systems, whose improvement will pose new challenges to the protocol design of future generation systems. These challenges are than addressed by novel methods that leverage from frequency varying propagation characteristics. The first method, improves the beam training process of millimeter wave networks, that need highly directional, though electronically steered, transmissions to overcome increased free space attenuation. By leveraging from omni-directional signal propagation at the microwave bands, efficient direction interference is utilized to provide information to millimeter wave interfaces and replace brute force direction testing. Second, deafness effects at the millimeter wave band, which impact IEEE 802.11 channel access methods are addressed. As directional communication on these bands complicates sensing the medium to be busy or idle, inefficiencies and unfairness are implied. By using coordination message exchange on the legacyWi-Fi frequencies with omnidirectional communication properties, these effects are countered. The millimeter wave bands can thus unfold their full potential, being exclusively used for high speed data frame transmission.Programa Oficial de Doctorado en Ingeniería TelemáticaPresidente: Ralf Steinmetz.- Secretario: Albert Banchs Roca.- Vocal: Kyle Jamieso

    Optimizing multiuser MIMO for access point cooperation in dense wireless networks

    Get PDF
    As the usage of wireless devices continues to grow rapidly in popularity, wireless networks that were once designed to support a few laptops must now host a much wider range of equipments, including smart phones, tablets, and wearable devices, that often run bandwidth-hungry applications. Improvements in wireless local access network (WLAN) technology are expected to help accommodate the huge traffic demands. In particular, advanced multicell Multiple-Input Multiple-Output (MIMO) techniques, involving the cooperation of APs and multiuser MIMO processing techniques, can be used to satisfy the increasing demands from users in high-density environments. The objective of this thesis is to address the fundamental problems for multiuser MIMO with AP cooperation in dense wireless network settings. First, for a very common multiuser MIMO linear precoding technique, block diagonalization, a novel pairing-and-binary-tree based user selection algorithm is proposed. Second, without the zero-forcing constraint on the multiuser MIMO transmission, a general weighted sum rate maximization problem is formulated for coordinated APs. A scalable algorithm that performs a combined optimization procedure is proposed to determine the user selection and MIMO weights. Third, we study the fair and high-throughput scheduling problem by formally specifying an optimization problem. Two algorithms are proposed to solve the problem using either alternating optimization or a two-stage procedure. Fourth, with the coexistence of both stationary and mobile users, different scheduling strategies are suggested for different user types. The provided theoretical analysis and simulation results in this thesis lay out the foundation for the realization of the clustered WLAN networks with AP cooperation.Ph.D

    Experimenting with commodity 802.11 hardware: overview and future directions

    Get PDF
    The huge adoption of 802.11 technologies has triggered a vast amount of experimentally-driven research works. These works range from performance analysis to protocol enhancements, including the proposal of novel applications and services. Due to the affordability of the technology, this experimental research is typically based on commercial off-the-shelf (COTS) devices, and, given the rate at which 802.11 releases new standards (which are adopted into new, affordable devices), the field is likely to continue to produce results. In this paper, we review and categorise the most prevalent works carried out with 802.11 COTS devices over the past 15 years, to present a timely snapshot of the areas that have attracted the most attention so far, through a taxonomy that distinguishes between performance studies, enhancements, services, and methodology. In this way, we provide a quick overview of the results achieved by the research community that enables prospective authors to identify potential areas of new research, some of which are discussed after the presentation of the survey.This work has been partly supported by the European Community through the CROWD project (FP7-ICT-318115) and by the Madrid Regional Government through the TIGRE5-CM program (S2013/ICE-2919).Publicad
    corecore