139 research outputs found

    A Survey on Multisensor Fusion and Consensus Filtering for Sensor Networks

    Get PDF
    Multisensor fusion and consensus filtering are two fascinating subjects in the research of sensor networks. In this survey, we will cover both classic results and recent advances developed in these two topics. First, we recall some important results in the development ofmultisensor fusion technology. Particularly, we pay great attention to the fusion with unknown correlations, which ubiquitously exist in most of distributed filtering problems. Next, we give a systematic review on several widely used consensus filtering approaches. Furthermore, some latest progress on multisensor fusion and consensus filtering is also presented. Finally, conclusions are drawn and several potential future research directions are outlined.the Royal Society of the UK, the National Natural Science Foundation of China under Grants 61329301, 61374039, 61304010, 11301118, and 61573246, the Hujiang Foundation of China under Grants C14002 and D15009, the Alexander von Humboldt Foundation of Germany, and the Innovation Fund Project for Graduate Student of Shanghai under Grant JWCXSL140

    Event-based recursive distributed filtering over wireless sensor networks

    Get PDF
    In this technical note, the distributed filtering problem is investigated for a class of discrete time-varying systems with an event-based communication mechanism. Each intelligent sensor node transmits the data to its neighbors only when the local innovation violates a predetermined Send-on-Delta (SoD) data transmission condition. The aim of the proposed problem is to construct a distributed filter for each sensor node subject to sporadic communications over wireless networks. In terms of an event indicator variable, the triggering information is utilized so as to reduce the conservatism in the filter analysis. An upper bound for the filtering error covariance is obtained in form of Riccati-like difference equations by utilizing the inductive method. Subsequently, such an upper bound is minimized by appropriately designing the filter parameters iteratively, where a novel matrix simplification technique is developed to handle the challenges resulting from the sparseness of the sensor network topology and filter structure preserving issues. The effectiveness of the proposed strategy is illustrated by a numerical simulation.This work is supported by National Basic Research Program of China (973 Program) under Grant 2010CB731800, National Natural Science Foundation of China under Grants 61210012, 61290324, 61473163 and 61273156, and Jiangsu Provincial Key Laboratory of E-business at Nanjing University of Jiangsu and Economics of China under Grant JSEB201301

    Time-and event-driven communication process for networked control systems: A survey

    Get PDF
    Copyright © 2014 Lei Zou et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.In recent years, theoretical and practical research topics on networked control systems (NCSs) have gained an increasing interest from many researchers in a variety of disciplines owing to the extensive applications of NCSs in practice. In particular, an urgent need has arisen to understand the effects of communication processes on system performances. Sampling and protocol are two fundamental aspects of a communication process which have attracted a great deal of research attention. Most research focus has been on the analysis and control of dynamical behaviors under certain sampling procedures and communication protocols. In this paper, we aim to survey some recent advances on the analysis and synthesis issues of NCSs with different sampling procedures (time-and event-driven sampling) and protocols (static and dynamic protocols). First, these sampling procedures and protocols are introduced in detail according to their engineering backgrounds as well as dynamic natures. Then, the developments of the stabilization, control, and filtering problems are systematically reviewed and discussed in great detail. Finally, we conclude the paper by outlining future research challenges for analysis and synthesis problems of NCSs with different communication processes.This work was supported in part by the National Natural Science Foundation of China under Grants 61329301, 61374127, and 61374010, the Royal Society of the UK, and the Alexander von Humboldt Foundation of Germany

    Distributed filtering of networked dynamic systems with non-gaussian noises over sensor networks: A survey

    Get PDF
    summary:Sensor networks are regarded as a promising technology in the field of information perception and processing owing to the ease of deployment, cost-effectiveness, flexibility, as well as reliability. The information exchange among sensors inevitably suffers from various network-induced phenomena caused by the limited resource utilization and complex application scenarios, and thus is required to be governed by suitable resource-saving communication mechanisms. It is also noteworthy that noises in system dynamics and sensor measurements are ubiquitous and in general unknown but can be bounded, rather than follow specific Gaussian distributions as assumed in Kalman-type filtering. Particular attention of this paper is paid to a survey of recent advances in distributed filtering of networked dynamic systems with non-Gaussian noises over sensor networks. First, two types of widely employed structures of distributed filters are reviewed, the corresponding analysis is systematically addressed, and some interesting results are provided. The inherent purpose of adding consensus terms into the distributed filters is profoundly disclosed. Then, some representative models characterizing various network-induced phenomena are reviewed and their corresponding analytical strategies are exhibited in detail. Furthermore, recent results on distributed filtering with non-Gaussian noises are sorted out in accordance with different network-induced phenomena and system models. Another emphasis is laid on recent developments of distributed filtering with various communication scheduling, which are summarized based on the inherent characteristics of their dynamic behavior associated with mathematical models. Finally, the state-of-the-art of distributed filtering and challenging issues, ranging from scalability, security to applications, are raised to guide possible future research

    Event-triggered filtering and fault estimation for nonlinear systems with stochastic sensor saturations

    Get PDF
    This paper is concerned with the filtering problem for a class of nonlinear systems with stochastic sensor saturations and event-triggered measurement transmissions. An event-triggered transmission scheme is proposed with hope to ease the traffic burden and improve the energy efficiency. The measurements are subject to randomly occurring sensor saturations governed by Bernoulli-distributed sequences. Special effort is made to obtain an upper bound of the filtering error covariance in the presence of linearisation errors, stochastic sensor saturations as well as event-triggered transmissions. A filter is designed to minimise the obtained upper bound at each time step by solving two sets of Riccati-like matrix equations, and thus the recursive algorithm is suitable for online computation. Sufficient conditions are established under which the filtering error is exponentially bounded in mean square. The applicability of the presented method is demonstrated by dealing with the fault estimation problem. An illustrative example is exploited to show the effectiveness of the proposed algorithm.This work was supported by the National Natural Science Foundation of China [grant number 61490701], [grant number 61522309], [grant number 61290324], [grant number 61473163], [grant number 61273156], Research Fund for the Taishan Scholar Project of Shandong Province of China, Tsinghua University Initiative Scientific Research Program, and Jiangsu Provincial Key Laboratory of E-business at Nanjing University of Finance and Economics of China [grant number JSEB201301]

    Simultaneous Estimation of Vehicle Sideslip and Roll Angles Using an Event-Triggered-Based IoT Architecture

    Get PDF
    In recent years, there has been a significant integration of advanced technology into the automotive industry, aimed primarily at enhancing safety and ride comfort. While a notable proportion of these driver-assist systems focuses on skid prevention, insufficient attention has been paid to addressing other crucial scenarios, such as rollovers. The accurate estimation of slip and roll angles plays a vital role in ensuring vehicle control and safety, making these parameters essential, especially with the rise of modern technologies that incorporate networked communication and distributed computing. Furthermore, there exists a lag in the transmission of information between the various vehicle systems, including sensors, actuators, and controllers. This paper outlines the design of an IoT architecture that accurately estimates the sideslip angle and roll angle of a vehicle, while addressing network transmission delays with a networked control system and an event-triggered communication scheme. Experimental results are presented to validate the performance of the IoT architecture proposed. The event-triggered scheme of the IoT solution is used to decrease data transmission and prevent network overload.Funding. Grant [ PID2022-136468OB-I00 ] funded by MCIN/AEI/ 10.13039/501100011033 and by “ERDF A way of making Europe”
    corecore